104 lines
5.7 KiB
Python
104 lines
5.7 KiB
Python
from fastapi import Body, Request
|
||
from fastapi.responses import StreamingResponse
|
||
from configs import (LLM_MODEL, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, TEMPERATURE)
|
||
from server.utils import wrap_done, get_ChatOpenAI
|
||
from server.utils import BaseResponse, get_prompt_template
|
||
from langchain.chains import LLMChain
|
||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
from typing import AsyncIterable, List, Optional
|
||
import asyncio
|
||
from langchain.prompts.chat import ChatPromptTemplate
|
||
from server.chat.utils import History
|
||
from server.knowledge_base.kb_service.base import KBService, KBServiceFactory
|
||
import json
|
||
import os
|
||
from urllib.parse import urlencode
|
||
from server.knowledge_base.kb_doc_api import search_docs
|
||
|
||
|
||
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
|
||
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
|
||
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
|
||
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=1),
|
||
history: List[History] = Body([],
|
||
description="历史对话",
|
||
examples=[[
|
||
{"role": "user",
|
||
"content": "我们来玩成语接龙,我先来,生龙活虎"},
|
||
{"role": "assistant",
|
||
"content": "虎头虎脑"}]]
|
||
),
|
||
stream: bool = Body(False, description="流式输出"),
|
||
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
|
||
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
max_tokens: int = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
|
||
):
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
print(kb.kb_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||
|
||
history = [History.from_data(h) for h in history]
|
||
|
||
async def knowledge_base_chat_iterator(query: str,
|
||
top_k: int,
|
||
history: Optional[List[History]],
|
||
model_name: str = LLM_MODEL,
|
||
prompt_name: str = prompt_name,
|
||
) -> AsyncIterable[str]:
|
||
callback = AsyncIteratorCallbackHandler()
|
||
model = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
callbacks=[callback],
|
||
)
|
||
# 向量数据库查询
|
||
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
|
||
print(docs)
|
||
context = "\n".join([doc.page_content for doc in docs])
|
||
print(context)
|
||
# 模板
|
||
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
|
||
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
|
||
chat_prompt = ChatPromptTemplate.from_messages(
|
||
[i.to_msg_template() for i in history] + [input_msg])
|
||
print(chat_prompt)
|
||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||
|
||
# Begin a task that runs in the background.
|
||
task = asyncio.create_task(wrap_done(
|
||
chain.acall({"context": context, "question": query}),
|
||
callback.done),
|
||
)
|
||
|
||
source_documents = []
|
||
for inum, doc in enumerate(docs):
|
||
filename = os.path.split(doc.metadata["source"])[-1]
|
||
parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename})
|
||
url = f"/knowledge_base/download_doc?" + parameters
|
||
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
|
||
source_documents.append(text)
|
||
if stream:
|
||
async for token in callback.aiter():
|
||
# Use server-sent-events to stream the response
|
||
yield json.dumps({"answer": token}, ensure_ascii=False)
|
||
yield json.dumps({"docs": source_documents}, ensure_ascii=False)
|
||
else:
|
||
answer = ""
|
||
async for token in callback.aiter():
|
||
answer += token
|
||
yield json.dumps({"answer": answer,
|
||
"docs": source_documents},
|
||
ensure_ascii=False)
|
||
|
||
await task
|
||
|
||
return StreamingResponse(knowledge_base_chat_iterator(query=query,
|
||
top_k=top_k,
|
||
history=history,
|
||
model_name=model_name,
|
||
prompt_name=prompt_name),
|
||
media_type="text/event-stream")
|