ai/server/chat/knowledge_base_chat.py

104 lines
5.7 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastapi import Body, Request
from fastapi.responses import StreamingResponse
from configs import (LLM_MODEL, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, TEMPERATURE)
from server.utils import wrap_done, get_ChatOpenAI
from server.utils import BaseResponse, get_prompt_template
from langchain.chains import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable, List, Optional
import asyncio
from langchain.prompts.chat import ChatPromptTemplate
from server.chat.utils import History
from server.knowledge_base.kb_service.base import KBService, KBServiceFactory
import json
import os
from urllib.parse import urlencode
from server.knowledge_base.kb_doc_api import search_docs
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: int = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
print(kb.kb_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
history = [History.from_data(h) for h in history]
async def knowledge_base_chat_iterator(query: str,
top_k: int,
history: Optional[List[History]],
model_name: str = LLM_MODEL,
prompt_name: str = prompt_name,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
)
# 向量数据库查询
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
print(docs)
context = "\n".join([doc.page_content for doc in docs])
print(context)
# 模板
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
print(chat_prompt)
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = []
for inum, doc in enumerate(docs):
filename = os.path.split(doc.metadata["source"])[-1]
parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename})
url = f"/knowledge_base/download_doc?" + parameters
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token}, ensure_ascii=False)
yield json.dumps({"docs": source_documents}, ensure_ascii=False)
else:
answer = ""
async for token in callback.aiter():
answer += token
yield json.dumps({"answer": answer,
"docs": source_documents},
ensure_ascii=False)
await task
return StreamingResponse(knowledge_base_chat_iterator(query=query,
top_k=top_k,
history=history,
model_name=model_name,
prompt_name=prompt_name),
media_type="text/event-stream")