ai/server/chat/knowledge_base_chat.py

104 lines
5.7 KiB
Python
Raw Permalink Normal View History

2023-12-14 14:26:13 +08:00
from fastapi import Body, Request
from fastapi.responses import StreamingResponse
from configs import (LLM_MODEL, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, TEMPERATURE)
from server.utils import wrap_done, get_ChatOpenAI
from server.utils import BaseResponse, get_prompt_template
from langchain.chains import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable, List, Optional
import asyncio
from langchain.prompts.chat import ChatPromptTemplate
from server.chat.utils import History
from server.knowledge_base.kb_service.base import KBService, KBServiceFactory
import json
import os
from urllib.parse import urlencode
from server.knowledge_base.kb_doc_api import search_docs
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: int = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
print(kb.kb_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
history = [History.from_data(h) for h in history]
async def knowledge_base_chat_iterator(query: str,
top_k: int,
history: Optional[List[History]],
model_name: str = LLM_MODEL,
prompt_name: str = prompt_name,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
)
# 向量数据库查询
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
print(docs)
context = "\n".join([doc.page_content for doc in docs])
print(context)
# 模板
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
print(chat_prompt)
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = []
for inum, doc in enumerate(docs):
filename = os.path.split(doc.metadata["source"])[-1]
parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename})
url = f"/knowledge_base/download_doc?" + parameters
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token}, ensure_ascii=False)
yield json.dumps({"docs": source_documents}, ensure_ascii=False)
else:
answer = ""
async for token in callback.aiter():
answer += token
yield json.dumps({"answer": answer,
"docs": source_documents},
ensure_ascii=False)
await task
return StreamingResponse(knowledge_base_chat_iterator(query=query,
top_k=top_k,
history=history,
model_name=model_name,
prompt_name=prompt_name),
media_type="text/event-stream")