ai/knownledge_api.py

209 lines
7.4 KiB
Python
Raw Normal View History

2023-12-14 14:26:13 +08:00
import nltk
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs import VERSION
from configs.model_config import NLTK_DATA_PATH
from configs.server_config import OPEN_CROSS_DOMAIN
import argparse
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import RedirectResponse
from server.chat import (chat, knowledge_base_chat, openai_chat,
search_engine_chat, agent_chat)
from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb
from server.knowledge_base.kb_doc_api import (list_files, upload_docs, delete_docs,
update_docs, download_doc, recreate_vector_store,
search_docs, DocumentWithScore, update_info)
from server import (list_running_models, list_config_models,
change_llm_model, stop_llm_model,
get_model_config, list_search_engines)
from server.utils import BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline, get_server_configs
from typing import List
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
async def document():
return RedirectResponse(url="/docs")
def create_app():
app = FastAPI(
title="Langchain-Chatchat API Server",
version=VERSION
)
MakeFastAPIOffline(app)
# Add CORS middleware to allow all origins
# 在config.py中设置OPEN_DOMAIN=True允许跨域
# set OPEN_DOMAIN=True in config.py to allow cross-domain
if OPEN_CROSS_DOMAIN:
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.get("/",
response_model=BaseResponse,
summary="swagger 文档")(document)
# Tag: Chat
app.post("/chat/fastchat",
tags=["Chat"],
summary="与llm模型对话(直接与fastchat api对话)")(openai_chat)
app.post("/chat/chat",
tags=["Chat"],
summary="与llm模型对话(通过LLMChain)")(chat)
app.post("/chat/knowledge_base_chat",
tags=["Chat"],
summary="与知识库对话")(knowledge_base_chat)
app.post("/chat/search_engine_chat",
tags=["Chat"],
summary="与搜索引擎对话")(search_engine_chat)
app.post("/chat/agent_chat",
tags=["Chat"],
summary="与agent对话")(agent_chat)
# Tag: Knowledge Base Management
app.get("/knowledge_base/list_knowledge_bases",
tags=["Knowledge Base Management"],
response_model=ListResponse,
summary="获取知识库列表")(list_kbs)
app.post("/knowledge_base/create_knowledge_base",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="创建知识库"
)(create_kb)
app.post("/knowledge_base/delete_knowledge_base",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库"
)(delete_kb)
app.get("/knowledge_base/list_files",
tags=["Knowledge Base Management"],
response_model=ListResponse,
summary="获取知识库内的文件列表"
)(list_files)
app.post("/knowledge_base/search_docs",
tags=["Knowledge Base Management"],
response_model=List[DocumentWithScore],
summary="搜索知识库"
)(search_docs)
app.post("/knowledge_base/upload_docs",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="上传文件到知识库,并/或进行向量化"
)(upload_docs)
app.post("/knowledge_base/delete_docs",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库内指定文件"
)(delete_docs)
app.post("/knowledge_base/update_info",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="更新知识库介绍"
)(update_info)
app.post("/knowledge_base/update_docs",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="更新现有文件到知识库"
)(update_docs)
app.get("/knowledge_base/download_doc",
tags=["Knowledge Base Management"],
summary="下载对应的知识文件")(download_doc)
app.post("/knowledge_base/recreate_vector_store",
tags=["Knowledge Base Management"],
summary="根据content中文档重建向量库流式输出处理进度。"
)(recreate_vector_store)
# LLM模型相关接口
app.post("/llm_model/list_running_models",
tags=["LLM Model Management"],
summary="列出当前已加载的模型",
)(list_running_models)
app.post("/llm_model/list_config_models",
tags=["LLM Model Management"],
summary="列出configs已配置的模型",
)(list_config_models)
app.post("/llm_model/get_model_config",
tags=["LLM Model Management"],
summary="获取模型配置(合并后)",
)(get_model_config)
app.post("/llm_model/stop",
tags=["LLM Model Management"],
summary="停止指定的LLM模型Model Worker)",
)(stop_llm_model)
app.post("/llm_model/change",
tags=["LLM Model Management"],
summary="切换指定的LLM模型Model Worker)",
)(change_llm_model)
# 服务器相关接口
app.post("/server/configs",
tags=["Server State"],
summary="获取服务器原始配置信息",
)(get_server_configs)
app.post("/server/list_search_engines",
tags=["Server State"],
summary="获取服务器支持的搜索引擎",
)(list_search_engines)
return app
app = create_app()
def run_api(host, port, **kwargs):
if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"):
uvicorn.run(app,
host=host,
port=port,
ssl_keyfile=kwargs.get("ssl_keyfile"),
ssl_certfile=kwargs.get("ssl_certfile"),
)
else:
uvicorn.run(app, host=host, port=port)
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog='langchain-ChatGLM',
description='About langchain-ChatGLM, local knowledge based ChatGLM with langchain'
' 基于本地知识库的 ChatGLM 问答')
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7861)
parser.add_argument("--ssl_keyfile", type=str)
parser.add_argument("--ssl_certfile", type=str)
# 初始化消息
args = parser.parse_args()
args_dict = vars(args)
run_api(host=args.host,
port=args.port,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
)