import nltk import sys import os sys.path.append(os.path.dirname(os.path.dirname(__file__))) from configs import VERSION from configs.model_config import NLTK_DATA_PATH from configs.server_config import OPEN_CROSS_DOMAIN import argparse import uvicorn from fastapi.middleware.cors import CORSMiddleware from starlette.responses import RedirectResponse from server.chat import (chat, knowledge_base_chat, openai_chat, search_engine_chat, agent_chat) from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb from server.knowledge_base.kb_doc_api import (list_files, upload_docs, delete_docs, update_docs, download_doc, recreate_vector_store, search_docs, DocumentWithScore, update_info) from server import (list_running_models, list_config_models, change_llm_model, stop_llm_model, get_model_config, list_search_engines) from server.utils import BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline, get_server_configs from typing import List nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path async def document(): return RedirectResponse(url="/docs") def create_app(): app = FastAPI( title="Langchain-Chatchat API Server", version=VERSION ) MakeFastAPIOffline(app) # Add CORS middleware to allow all origins # 在config.py中设置OPEN_DOMAIN=True,允许跨域 # set OPEN_DOMAIN=True in config.py to allow cross-domain if OPEN_CROSS_DOMAIN: app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.get("/", response_model=BaseResponse, summary="swagger 文档")(document) # Tag: Chat app.post("/chat/fastchat", tags=["Chat"], summary="与llm模型对话(直接与fastchat api对话)")(openai_chat) app.post("/chat/chat", tags=["Chat"], summary="与llm模型对话(通过LLMChain)")(chat) app.post("/chat/knowledge_base_chat", tags=["Chat"], summary="与知识库对话")(knowledge_base_chat) app.post("/chat/search_engine_chat", tags=["Chat"], summary="与搜索引擎对话")(search_engine_chat) app.post("/chat/agent_chat", tags=["Chat"], summary="与agent对话")(agent_chat) # Tag: Knowledge Base Management app.get("/knowledge_base/list_knowledge_bases", tags=["Knowledge Base Management"], response_model=ListResponse, summary="获取知识库列表")(list_kbs) app.post("/knowledge_base/create_knowledge_base", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="创建知识库" )(create_kb) app.post("/knowledge_base/delete_knowledge_base", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="删除知识库" )(delete_kb) app.get("/knowledge_base/list_files", tags=["Knowledge Base Management"], response_model=ListResponse, summary="获取知识库内的文件列表" )(list_files) app.post("/knowledge_base/search_docs", tags=["Knowledge Base Management"], response_model=List[DocumentWithScore], summary="搜索知识库" )(search_docs) app.post("/knowledge_base/upload_docs", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="上传文件到知识库,并/或进行向量化" )(upload_docs) app.post("/knowledge_base/delete_docs", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="删除知识库内指定文件" )(delete_docs) app.post("/knowledge_base/update_info", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="更新知识库介绍" )(update_info) app.post("/knowledge_base/update_docs", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="更新现有文件到知识库" )(update_docs) app.get("/knowledge_base/download_doc", tags=["Knowledge Base Management"], summary="下载对应的知识文件")(download_doc) app.post("/knowledge_base/recreate_vector_store", tags=["Knowledge Base Management"], summary="根据content中文档重建向量库,流式输出处理进度。" )(recreate_vector_store) # LLM模型相关接口 app.post("/llm_model/list_running_models", tags=["LLM Model Management"], summary="列出当前已加载的模型", )(list_running_models) app.post("/llm_model/list_config_models", tags=["LLM Model Management"], summary="列出configs已配置的模型", )(list_config_models) app.post("/llm_model/get_model_config", tags=["LLM Model Management"], summary="获取模型配置(合并后)", )(get_model_config) app.post("/llm_model/stop", tags=["LLM Model Management"], summary="停止指定的LLM模型(Model Worker)", )(stop_llm_model) app.post("/llm_model/change", tags=["LLM Model Management"], summary="切换指定的LLM模型(Model Worker)", )(change_llm_model) # 服务器相关接口 app.post("/server/configs", tags=["Server State"], summary="获取服务器原始配置信息", )(get_server_configs) app.post("/server/list_search_engines", tags=["Server State"], summary="获取服务器支持的搜索引擎", )(list_search_engines) return app app = create_app() def run_api(host, port, **kwargs): if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"): uvicorn.run(app, host=host, port=port, ssl_keyfile=kwargs.get("ssl_keyfile"), ssl_certfile=kwargs.get("ssl_certfile"), ) else: uvicorn.run(app, host=host, port=port) if __name__ == "__main__": parser = argparse.ArgumentParser(prog='langchain-ChatGLM', description='About langchain-ChatGLM, local knowledge based ChatGLM with langchain' ' | 基于本地知识库的 ChatGLM 问答') parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default=7861) parser.add_argument("--ssl_keyfile", type=str) parser.add_argument("--ssl_certfile", type=str) # 初始化消息 args = parser.parse_args() args_dict = vars(args) run_api(host=args.host, port=args.port, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, )