import os import configs from configs import ( KB_ROOT_PATH, CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE, logger, log_verbose, text_splitter_dict, LLM_MODELS, TEXT_SPLITTER_NAME, ) import importlib from text_splitter import zh_title_enhance as func_zh_title_enhance import langchain.document_loaders from langchain.docstore.document import Document from langchain.text_splitter import TextSplitter from pathlib import Path import json from server.utils import run_in_thread_pool, get_model_worker_config import io from typing import List, Union, Callable, Dict, Optional, Tuple, Generator import chardet def validate_kb_name(knowledge_base_id: str) -> bool: # 检查是否包含预期外的字符或路径攻击关键字 if "../" in knowledge_base_id: return False return True def get_kb_path(knowledge_base_name: str): return os.path.join(KB_ROOT_PATH, knowledge_base_name) def get_doc_path(knowledge_base_name: str): return os.path.join(get_kb_path(knowledge_base_name), "content") def get_vs_path(knowledge_base_name: str, vector_name: str): return os.path.join(get_kb_path(knowledge_base_name), "vector_store", vector_name) def get_file_path(knowledge_base_name: str, doc_name: str): return os.path.join(get_doc_path(knowledge_base_name), doc_name) def list_kbs_from_folder(): return [f for f in os.listdir(KB_ROOT_PATH) if os.path.isdir(os.path.join(KB_ROOT_PATH, f))] def list_files_from_folder(kb_name: str): doc_path = get_doc_path(kb_name) result = [] for root, _, files in os.walk(doc_path): tail = os.path.basename(root).lower() if (tail.startswith("temp") or tail.startswith("tmp") or tail.startswith(".")): # 跳过 [temp, tmp, .] 开头的文件夹 continue for file in files: if file.startswith("~$"): # 跳过 ~$ 开头的文件 continue path = Path(doc_path) / root / file result.append(path.resolve().relative_to(doc_path).as_posix()) return result LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'], "UnstructuredMarkdownLoader": ['.md'], "CustomJSONLoader": [".json"], "CSVLoader": [".csv"], # "FilteredCSVLoader": [".csv"], # 需要自己指定,目前还没有支持 "RapidOCRPDFLoader": [".pdf"], "RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'], "UnstructuredFileLoader": ['.eml', '.msg', '.rst', '.rtf', '.txt', '.xml', '.docx', '.epub', '.odt', '.ppt', '.pptx', '.tsv'], } SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist] class CustomJSONLoader(langchain.document_loaders.JSONLoader): ''' langchain的JSONLoader需要jq,在win上使用不便,进行替代。针对langchain==0.0.286 ''' def __init__( self, file_path: Union[str, Path], content_key: Optional[str] = None, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False, ): """Initialize the JSONLoader. Args: file_path (Union[str, Path]): The path to the JSON or JSON Lines file. content_key (str): The key to use to extract the content from the JSON if results to a list of objects (dict). metadata_func (Callable[Dict, Dict]): A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool): Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool): Boolean flag to indicate whether the input is in JSON Lines format. """ self.file_path = Path(file_path).resolve() self._content_key = content_key self._metadata_func = metadata_func self._text_content = text_content self._json_lines = json_lines def _parse(self, content: str, docs: List[Document]) -> None: """Convert given content to documents.""" data = json.loads(content) # Perform some validation # This is not a perfect validation, but it should catch most cases # and prevent the user from getting a cryptic error later on. if self._content_key is not None: self._validate_content_key(data) if self._metadata_func is not None: self._validate_metadata_func(data) for i, sample in enumerate(data, len(docs) + 1): text = self._get_text(sample=sample) metadata = self._get_metadata( sample=sample, source=str(self.file_path), seq_num=i ) docs.append(Document(page_content=text, metadata=metadata)) langchain.document_loaders.CustomJSONLoader = CustomJSONLoader def get_LoaderClass(file_extension): for LoaderClass, extensions in LOADER_DICT.items(): if file_extension in extensions: return LoaderClass # 把一些向量化共用逻辑从KnowledgeFile抽取出来,等langchain支持内存文件的时候,可以将非磁盘文件向量化 def get_loader(loader_name: str, file_path_or_content: Union[str, bytes, io.StringIO, io.BytesIO]): ''' 根据loader_name和文件路径或内容返回文档加载器。 ''' try: if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader","FilteredCSVLoader"]: document_loaders_module = importlib.import_module('document_loaders') else: document_loaders_module = importlib.import_module('langchain.document_loaders') DocumentLoader = getattr(document_loaders_module, loader_name) except Exception as e: msg = f"为文件{file_path_or_content}查找加载器{loader_name}时出错:{e}" logger.error(f'{e.__class__.__name__}: {msg}', exc_info=e if log_verbose else None) document_loaders_module = importlib.import_module('langchain.document_loaders') DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader") if loader_name == "UnstructuredFileLoader": loader = DocumentLoader(file_path_or_content, autodetect_encoding=True) elif loader_name == "CSVLoader": # 自动识别文件编码类型,避免langchain loader 加载文件报编码错误 with open(file_path_or_content, 'rb') as struct_file: encode_detect = chardet.detect(struct_file.read()) if encode_detect is None: encode_detect = {"encoding": "utf-8"} loader = DocumentLoader(file_path_or_content, encoding=encode_detect["encoding"]) ## TODO:支持更多的自定义CSV读取逻辑 elif loader_name == "JSONLoader": loader = DocumentLoader(file_path_or_content, jq_schema=".", text_content=False) elif loader_name == "CustomJSONLoader": loader = DocumentLoader(file_path_or_content, text_content=False) elif loader_name == "UnstructuredMarkdownLoader": loader = DocumentLoader(file_path_or_content, mode="elements") elif loader_name == "UnstructuredHTMLLoader": loader = DocumentLoader(file_path_or_content, mode="elements") else: loader = DocumentLoader(file_path_or_content) return loader def make_text_splitter( splitter_name: str = TEXT_SPLITTER_NAME, chunk_size: int = CHUNK_SIZE, chunk_overlap: int = OVERLAP_SIZE, llm_model: str = LLM_MODELS[0], ): """ 根据参数获取特定的分词器 """ splitter_name = splitter_name or "SpacyTextSplitter" try: if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定 headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on'] text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter( headers_to_split_on=headers_to_split_on) else: try: ## 优先使用用户自定义的text_splitter text_splitter_module = importlib.import_module('text_splitter') TextSplitter = getattr(text_splitter_module, splitter_name) except: ## 否则使用langchain的text_splitter text_splitter_module = importlib.import_module('langchain.text_splitter') TextSplitter = getattr(text_splitter_module, splitter_name) if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载 try: text_splitter = TextSplitter.from_tiktoken_encoder( encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"], pipeline="zh_core_web_sm", chunk_size=chunk_size, chunk_overlap=chunk_overlap ) except: text_splitter = TextSplitter.from_tiktoken_encoder( encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"], chunk_size=chunk_size, chunk_overlap=chunk_overlap ) elif text_splitter_dict[splitter_name]["source"] == "huggingface": ## 从huggingface加载 if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "": config = get_model_worker_config(llm_model) model_path = configs.LLM_MODELS[0] print(config.get("model_path")) text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \ config.get("model_path") if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2": from transformers import GPT2TokenizerFast from langchain.text_splitter import CharacterTextSplitter tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") else: ## 字符长度加载 from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( text_splitter_dict[splitter_name]["tokenizer_name_or_path"], trust_remote_code=True) print(tokenizer) text_splitter = TextSplitter.from_huggingface_tokenizer( tokenizer=tokenizer, chunk_size=chunk_size, chunk_overlap=chunk_overlap ) else: text_splitter = TextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) # try: # text_splitter = TextSplitter( # pipeline="zh_core_web_sm", # chunk_size=chunk_size, # chunk_overlap=chunk_overlap # ) # except: # text_splitter = TextSplitter( # chunk_size=chunk_size, # chunk_overlap=chunk_overlap # ) except Exception as e: print(e) text_splitter_module = importlib.import_module('langchain.text_splitter') TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter") text_splitter = TextSplitter(chunk_size=250, chunk_overlap=50) return text_splitter class KnowledgeFile: def __init__( self, filename: str, knowledge_base_name: str ): ''' 对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。 ''' self.kb_name = knowledge_base_name self.filename = filename self.ext = os.path.splitext(filename)[-1].lower() if self.ext not in SUPPORTED_EXTS: raise ValueError(f"暂未支持的文件格式 {self.ext}") self.filepath = get_file_path(knowledge_base_name, filename) self.docs = None self.splited_docs = None self.document_loader_name = get_LoaderClass(self.ext) self.text_splitter_name = TEXT_SPLITTER_NAME def file2docs(self, refresh: bool = False): if self.docs is None or refresh: logger.info(f"{self.document_loader_name} used for {self.filepath}") loader = get_loader(self.document_loader_name, self.filepath) self.docs = loader.load() return self.docs def docs2texts( self, docs: List[Document] = None, zh_title_enhance: bool = ZH_TITLE_ENHANCE, refresh: bool = False, chunk_size: int = CHUNK_SIZE, chunk_overlap: int = OVERLAP_SIZE, text_splitter: TextSplitter = None, ): docs = docs or self.file2docs(refresh=refresh) if not docs: return [] if self.ext not in [".csv"]: if text_splitter is None: text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size, chunk_overlap=chunk_overlap) if self.text_splitter_name == "MarkdownHeaderTextSplitter": docs = text_splitter.split_text(docs[0].page_content) for doc in docs: # 如果文档有元数据 if doc.metadata: doc.metadata["source"] = os.path.basename(self.filepath) else: docs = text_splitter.split_documents(docs) print(f"文档切分示例:{docs[0]}") if zh_title_enhance: docs = func_zh_title_enhance(docs) self.splited_docs = docs return self.splited_docs def file2text( self, zh_title_enhance: bool = ZH_TITLE_ENHANCE, refresh: bool = False, chunk_size: int = CHUNK_SIZE, chunk_overlap: int = OVERLAP_SIZE, text_splitter: TextSplitter = None, ): if self.splited_docs is None or refresh: docs = self.file2docs() self.splited_docs = self.docs2texts(docs=docs, zh_title_enhance=zh_title_enhance, refresh=refresh, chunk_size=chunk_size, chunk_overlap=chunk_overlap, text_splitter=text_splitter) return self.splited_docs def file_exist(self): return os.path.isfile(self.filepath) def get_mtime(self): return os.path.getmtime(self.filepath) def get_size(self): return os.path.getsize(self.filepath) def files2docs_in_thread( files: List[Union[KnowledgeFile, Tuple[str, str], Dict]], chunk_size: int = CHUNK_SIZE, chunk_overlap: int = OVERLAP_SIZE, zh_title_enhance: bool = ZH_TITLE_ENHANCE, ) -> Generator: ''' 利用多线程批量将磁盘文件转化成langchain Document. 如果传入参数是Tuple,形式为(filename, kb_name) 生成器返回值为 status, (kb_name, file_name, docs | error) ''' def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]: try: return True, (file.kb_name, file.filename, file.file2text(**kwargs)) except Exception as e: msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}" logger.error(f'{e.__class__.__name__}: {msg}', exc_info=e if log_verbose else None) return False, (file.kb_name, file.filename, msg) kwargs_list = [] for i, file in enumerate(files): kwargs = {} try: if isinstance(file, tuple) and len(file) >= 2: filename = file[0] kb_name = file[1] file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name) elif isinstance(file, dict): filename = file.pop("filename") kb_name = file.pop("kb_name") kwargs.update(file) file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name) kwargs["file"] = file kwargs["chunk_size"] = chunk_size kwargs["chunk_overlap"] = chunk_overlap kwargs["zh_title_enhance"] = zh_title_enhance kwargs_list.append(kwargs) except Exception as e: yield False, (kb_name, filename, str(e)) for result in run_in_thread_pool(func=file2docs, params=kwargs_list): yield result if __name__ == "__main__": from pprint import pprint kb_file = KnowledgeFile( filename="/home/congyin/Code/Project_Langchain_0814/Langchain-Chatchat/knowledge_base/csv1/content/gm.csv", knowledge_base_name="samples") # kb_file.text_splitter_name = "RecursiveCharacterTextSplitter" docs = kb_file.file2docs() # pprint(docs[-1])