import os import shutil from configs import SCORE_THRESHOLD from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter from server.knowledge_base.kb_cache.faiss_cache import kb_faiss_pool, ThreadSafeFaiss from server.knowledge_base.utils import KnowledgeFile, get_kb_path, get_vs_path from server.utils import torch_gc from langchain.docstore.document import Document from typing import List, Dict, Optional class FaissKBService(KBService): vs_path: str kb_path: str vector_name: str = None def vs_type(self) -> str: return SupportedVSType.FAISS def get_vs_path(self): return get_vs_path(self.kb_name, self.vector_name) def get_kb_path(self): return get_kb_path(self.kb_name) def load_vector_store(self) -> ThreadSafeFaiss: return kb_faiss_pool.load_vector_store(kb_name=self.kb_name, vector_name=self.vector_name, embed_model=self.embed_model) def save_vector_store(self): self.load_vector_store().save(self.vs_path) def get_doc_by_id(self, id: str) -> Optional[Document]: with self.load_vector_store().acquire() as vs: return vs.docstore._dict.get(id) def do_init(self): self.vector_name = self.vector_name or self.embed_model self.kb_path = self.get_kb_path() self.vs_path = self.get_vs_path() def do_create_kb(self): if not os.path.exists(self.vs_path): os.makedirs(self.vs_path) self.load_vector_store() def do_drop_kb(self): self.clear_vs() try: shutil.rmtree(self.kb_path) except Exception: ... def do_search(self, query: str, top_k: int, score_threshold: float = SCORE_THRESHOLD, ) -> List[Document]: embed_func = EmbeddingsFunAdapter(self.embed_model) embeddings = embed_func.embed_query(query) with self.load_vector_store().acquire() as vs: docs = vs.similarity_search_with_score_by_vector(embeddings, k=top_k, score_threshold=score_threshold) return docs def do_add_doc(self, docs: List[Document], **kwargs, ) -> List[Dict]: data = self._docs_to_embeddings(docs) # 将向量化单独出来可以减少向量库的锁定时间 with self.load_vector_store().acquire() as vs: ids = vs.add_embeddings(text_embeddings=zip(data["texts"], data["embeddings"]), metadatas=data["metadatas"]) if not kwargs.get("not_refresh_vs_cache"): vs.save_local(self.vs_path) doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)] torch_gc() return doc_infos def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs): with self.load_vector_store().acquire() as vs: ids = [k for k, v in vs.docstore._dict.items() if v.metadata.get("source") == kb_file.filepath] if len(ids) > 0: vs.delete(ids) if not kwargs.get("not_refresh_vs_cache"): vs.save_local(self.vs_path) return ids def do_clear_vs(self): with kb_faiss_pool.atomic: kb_faiss_pool.pop((self.kb_name, self.vector_name)) try: shutil.rmtree(self.vs_path) except Exception: ... os.makedirs(self.vs_path, exist_ok=True) def exist_doc(self, file_name: str): if super().exist_doc(file_name): return "in_db" content_path = os.path.join(self.kb_path, "content") if os.path.isfile(os.path.join(content_path, file_name)): return "in_folder" else: return False if __name__ == '__main__': faissService = FaissKBService("test") faissService.add_doc(KnowledgeFile("README.md", "test")) faissService.delete_doc(KnowledgeFile("README.md", "test")) faissService.do_drop_kb() print(faissService.search_docs("如何启动api服务"))