185 lines
7.5 KiB
Python
185 lines
7.5 KiB
Python
|
from configs import (
|
|||
|
EMBEDDING_MODEL, DEFAULT_VS_TYPE, ZH_TITLE_ENHANCE,
|
|||
|
CHUNK_SIZE, OVERLAP_SIZE,
|
|||
|
logger, log_verbose
|
|||
|
)
|
|||
|
from server.knowledge_base.utils import (
|
|||
|
get_file_path, list_kbs_from_folder,
|
|||
|
list_files_from_folder, files2docs_in_thread,
|
|||
|
KnowledgeFile
|
|||
|
)
|
|||
|
from server.knowledge_base.kb_service.base import KBServiceFactory
|
|||
|
from server.db.models.chat_history_model import ChatHistoryModel
|
|||
|
from server.db.repository.knowledge_file_repository import add_file_to_db # ensure Models are imported
|
|||
|
from server.db.base import Base, engine
|
|||
|
from server.db.session import session_scope
|
|||
|
import os
|
|||
|
from dateutil.parser import parse
|
|||
|
from typing import Literal, List
|
|||
|
|
|||
|
|
|||
|
def create_tables():
|
|||
|
Base.metadata.create_all(bind=engine)
|
|||
|
|
|||
|
|
|||
|
def reset_tables():
|
|||
|
Base.metadata.drop_all(bind=engine)
|
|||
|
create_tables()
|
|||
|
|
|||
|
|
|||
|
def import_from_db(
|
|||
|
sqlite_path: str = None,
|
|||
|
# csv_path: str = None,
|
|||
|
) -> bool:
|
|||
|
"""
|
|||
|
在知识库与向量库无变化的情况下,从备份数据库中导入数据到 info.db。
|
|||
|
适用于版本升级时,info.db 结构变化,但无需重新向量化的情况。
|
|||
|
请确保两边数据库表名一致,需要导入的字段名一致
|
|||
|
当前仅支持 sqlite
|
|||
|
"""
|
|||
|
import sqlite3 as sql
|
|||
|
from pprint import pprint
|
|||
|
|
|||
|
models = list(Base.registry.mappers)
|
|||
|
|
|||
|
try:
|
|||
|
con = sql.connect(sqlite_path)
|
|||
|
con.row_factory = sql.Row
|
|||
|
cur = con.cursor()
|
|||
|
tables = [x["name"] for x in cur.execute("select name from sqlite_master where type='table'").fetchall()]
|
|||
|
for model in models:
|
|||
|
table = model.local_table.fullname
|
|||
|
if table not in tables:
|
|||
|
continue
|
|||
|
print(f"processing table: {table}")
|
|||
|
with session_scope() as session:
|
|||
|
for row in cur.execute(f"select * from {table}").fetchall():
|
|||
|
data = {k: row[k] for k in row.keys() if k in model.columns}
|
|||
|
if "create_time" in data:
|
|||
|
data["create_time"] = parse(data["create_time"])
|
|||
|
pprint(data)
|
|||
|
session.add(model.class_(**data))
|
|||
|
con.close()
|
|||
|
return True
|
|||
|
except Exception as e:
|
|||
|
print(f"无法读取备份数据库:{sqlite_path}。错误信息:{e}")
|
|||
|
return False
|
|||
|
|
|||
|
|
|||
|
def file_to_kbfile(kb_name: str, files: List[str]) -> List[KnowledgeFile]:
|
|||
|
kb_files = []
|
|||
|
for file in files:
|
|||
|
try:
|
|||
|
kb_file = KnowledgeFile(filename=file, knowledge_base_name=kb_name)
|
|||
|
kb_files.append(kb_file)
|
|||
|
except Exception as e:
|
|||
|
msg = f"{e},已跳过"
|
|||
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
|||
|
exc_info=e if log_verbose else None)
|
|||
|
return kb_files
|
|||
|
|
|||
|
|
|||
|
def folder2db(
|
|||
|
kb_names: List[str],
|
|||
|
mode: Literal["recreate_vs", "update_in_db", "increament"],
|
|||
|
vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = DEFAULT_VS_TYPE,
|
|||
|
embed_model: str = EMBEDDING_MODEL,
|
|||
|
chunk_size: int = CHUNK_SIZE,
|
|||
|
chunk_overlap: int = OVERLAP_SIZE,
|
|||
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|||
|
):
|
|||
|
"""
|
|||
|
use existed files in local folder to populate database and/or vector store.
|
|||
|
set parameter `mode` to:
|
|||
|
recreate_vs: recreate all vector store and fill info to database using existed files in local folder
|
|||
|
fill_info_only(disabled): do not create vector store, fill info to db using existed files only
|
|||
|
update_in_db: update vector store and database info using local files that existed in database only
|
|||
|
increament: create vector store and database info for local files that not existed in database only
|
|||
|
"""
|
|||
|
|
|||
|
def files2vs(kb_name: str, kb_files: List[KnowledgeFile]):
|
|||
|
for success, result in files2docs_in_thread(kb_files,
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap,
|
|||
|
zh_title_enhance=zh_title_enhance):
|
|||
|
if success:
|
|||
|
_, filename, docs = result
|
|||
|
print(f"正在将 {kb_name}/{filename} 添加到向量库,共包含{len(docs)}条文档")
|
|||
|
kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
|||
|
kb_file.splited_docs = docs
|
|||
|
kb.add_doc(kb_file=kb_file, not_refresh_vs_cache=True)
|
|||
|
else:
|
|||
|
print(result)
|
|||
|
|
|||
|
kb_names = kb_names or list_kbs_from_folder()
|
|||
|
for kb_name in kb_names:
|
|||
|
kb = KBServiceFactory.get_service(kb_name, vs_type, embed_model)
|
|||
|
if not kb.exists():
|
|||
|
kb.create_kb()
|
|||
|
|
|||
|
# 清除向量库,从本地文件重建
|
|||
|
if mode == "recreate_vs":
|
|||
|
kb.clear_vs()
|
|||
|
kb.create_kb()
|
|||
|
kb_files = file_to_kbfile(kb_name, list_files_from_folder(kb_name))
|
|||
|
files2vs(kb_name, kb_files)
|
|||
|
kb.save_vector_store()
|
|||
|
# # 不做文件内容的向量化,仅将文件元信息存到数据库
|
|||
|
# # 由于现在数据库存了很多与文本切分相关的信息,单纯存储文件信息意义不大,该功能取消。
|
|||
|
# elif mode == "fill_info_only":
|
|||
|
# files = list_files_from_folder(kb_name)
|
|||
|
# kb_files = file_to_kbfile(kb_name, files)
|
|||
|
# for kb_file in kb_files:
|
|||
|
# add_file_to_db(kb_file)
|
|||
|
# print(f"已将 {kb_name}/{kb_file.filename} 添加到数据库")
|
|||
|
# 以数据库中文件列表为基准,利用本地文件更新向量库
|
|||
|
elif mode == "update_in_db":
|
|||
|
files = kb.list_files()
|
|||
|
kb_files = file_to_kbfile(kb_name, files)
|
|||
|
files2vs(kb_name, kb_files)
|
|||
|
kb.save_vector_store()
|
|||
|
# 对比本地目录与数据库中的文件列表,进行增量向量化
|
|||
|
elif mode == "increament":
|
|||
|
db_files = kb.list_files()
|
|||
|
folder_files = list_files_from_folder(kb_name)
|
|||
|
files = list(set(folder_files) - set(db_files))
|
|||
|
kb_files = file_to_kbfile(kb_name, files)
|
|||
|
files2vs(kb_name, kb_files)
|
|||
|
kb.save_vector_store()
|
|||
|
else:
|
|||
|
print(f"unspported migrate mode: {mode}")
|
|||
|
|
|||
|
|
|||
|
def prune_db_docs(kb_names: List[str]):
|
|||
|
"""
|
|||
|
delete docs in database that not existed in local folder.
|
|||
|
it is used to delete database docs after user deleted some doc files in file browser
|
|||
|
"""
|
|||
|
for kb_name in kb_names:
|
|||
|
kb = KBServiceFactory.get_service_by_name(kb_name)
|
|||
|
if kb is not None:
|
|||
|
files_in_db = kb.list_files()
|
|||
|
files_in_folder = list_files_from_folder(kb_name)
|
|||
|
files = list(set(files_in_db) - set(files_in_folder))
|
|||
|
kb_files = file_to_kbfile(kb_name, files)
|
|||
|
for kb_file in kb_files:
|
|||
|
kb.delete_doc(kb_file, not_refresh_vs_cache=True)
|
|||
|
print(f"success to delete docs for file: {kb_name}/{kb_file.filename}")
|
|||
|
kb.save_vector_store()
|
|||
|
|
|||
|
|
|||
|
def prune_folder_files(kb_names: List[str]):
|
|||
|
"""
|
|||
|
delete doc files in local folder that not existed in database.
|
|||
|
it is used to free local disk space by delete unused doc files.
|
|||
|
"""
|
|||
|
for kb_name in kb_names:
|
|||
|
kb = KBServiceFactory.get_service_by_name(kb_name)
|
|||
|
if kb is not None:
|
|||
|
files_in_db = kb.list_files()
|
|||
|
files_in_folder = list_files_from_folder(kb_name)
|
|||
|
files = list(set(files_in_folder) - set(files_in_db))
|
|||
|
for file in files:
|
|||
|
os.remove(get_file_path(kb_name, file))
|
|||
|
print(f"success to delete file: {kb_name}/{file}")
|