124 lines
3.9 KiB
Python
124 lines
3.9 KiB
Python
import json
|
|
import sys
|
|
from configs import TEMPERATURE
|
|
from http import HTTPStatus
|
|
from typing import List, Literal, Dict
|
|
|
|
from fastchat import conversation as conv
|
|
|
|
from server.model_workers.base import ApiModelWorker
|
|
from server.utils import get_model_worker_config
|
|
|
|
|
|
def request_qwen_api(
|
|
messages: List[Dict[str, str]],
|
|
api_key: str = None,
|
|
version: str = "qwen-turbo",
|
|
temperature: float = TEMPERATURE,
|
|
model_name: str = "qwen-api",
|
|
):
|
|
import dashscope
|
|
|
|
config = get_model_worker_config(model_name)
|
|
api_key = api_key or config.get("api_key")
|
|
version = version or config.get("version")
|
|
|
|
gen = dashscope.Generation()
|
|
responses = gen.call(
|
|
model=version,
|
|
temperature=temperature,
|
|
api_key=api_key,
|
|
messages=messages,
|
|
result_format='message', # set the result is message format.
|
|
stream=True,
|
|
)
|
|
|
|
text = ""
|
|
for resp in responses:
|
|
if resp.status_code != HTTPStatus.OK:
|
|
yield {
|
|
"code": resp.status_code,
|
|
"text": "api not response correctly",
|
|
}
|
|
|
|
if resp["status_code"] == 200:
|
|
if choices := resp["output"]["choices"]:
|
|
yield {
|
|
"code": 200,
|
|
"text": choices[0]["message"]["content"],
|
|
}
|
|
else:
|
|
yield {
|
|
"code": resp["status_code"],
|
|
"text": resp["message"],
|
|
}
|
|
|
|
|
|
class QwenWorker(ApiModelWorker):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
version: Literal["qwen-turbo", "qwen-plus"] = "qwen-turbo",
|
|
model_names: List[str] = ["qwen-api"],
|
|
controller_addr: str,
|
|
worker_addr: str,
|
|
**kwargs,
|
|
):
|
|
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
|
kwargs.setdefault("context_len", 16384)
|
|
super().__init__(**kwargs)
|
|
|
|
# TODO: 确认模板是否需要修改
|
|
self.conv = conv.Conversation(
|
|
name=self.model_names[0],
|
|
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
|
|
messages=[],
|
|
roles=["user", "assistant", "system"],
|
|
sep="\n### ",
|
|
stop_str="###",
|
|
)
|
|
config = self.get_config()
|
|
self.api_key = config.get("api_key")
|
|
self.version = version
|
|
|
|
def generate_stream_gate(self, params):
|
|
messages = self.prompt_to_messages(params["prompt"])
|
|
|
|
for resp in request_qwen_api(messages=messages,
|
|
api_key=self.api_key,
|
|
version=self.version,
|
|
temperature=params.get("temperature")):
|
|
if resp["code"] == 200:
|
|
yield json.dumps({
|
|
"error_code": 0,
|
|
"text": resp["text"]
|
|
},
|
|
ensure_ascii=False
|
|
).encode() + b"\0"
|
|
else:
|
|
yield json.dumps({
|
|
"error_code": resp["code"],
|
|
"text": resp["text"]
|
|
},
|
|
ensure_ascii=False
|
|
).encode() + b"\0"
|
|
|
|
def get_embeddings(self, params):
|
|
# TODO: 支持embeddings
|
|
print("embedding")
|
|
print(params)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
from server.utils import MakeFastAPIOffline
|
|
from fastchat.serve.model_worker import app
|
|
|
|
worker = QwenWorker(
|
|
controller_addr="http://127.0.0.1:20001",
|
|
worker_addr="http://127.0.0.1:20007",
|
|
)
|
|
sys.modules["fastchat.serve.model_worker"].worker = worker
|
|
MakeFastAPIOffline(app)
|
|
uvicorn.run(app, port=20007)
|