75 lines
3.4 KiB
Python
75 lines
3.4 KiB
Python
from fastapi import Body
|
||
from fastapi.responses import StreamingResponse
|
||
from configs import LLM_MODEL, TEMPERATURE
|
||
from server.utils import wrap_done, get_ChatOpenAI
|
||
from langchain.chains import LLMChain
|
||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
from typing import AsyncIterable
|
||
import asyncio
|
||
from langchain.prompts.chat import ChatPromptTemplate
|
||
from typing import List
|
||
from server.chat.utils import History
|
||
from server.utils import get_prompt_template
|
||
|
||
from configs.prompt_config import q
|
||
|
||
|
||
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
|
||
history: List[History] = Body([],
|
||
description="历史对话",
|
||
examples=[[
|
||
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
|
||
{"role": "assistant", "content": "虎头虎脑"}]]
|
||
),
|
||
stream: bool = Body(False, description="流式输出"),
|
||
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
|
||
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
max_tokens: int = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
|
||
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
|
||
):
|
||
history = [History.from_data(h) for h in history]
|
||
|
||
async def chat_iterator(query: str,
|
||
history: List[History] = [],
|
||
model_name: str = LLM_MODEL,
|
||
prompt_name: str = prompt_name,
|
||
) -> AsyncIterable[str]:
|
||
callback = AsyncIteratorCallbackHandler()
|
||
model = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
callbacks=[callback],
|
||
)
|
||
|
||
prompt_template = get_prompt_template("llm_chat", prompt_name)
|
||
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
|
||
chat_prompt = ChatPromptTemplate.from_messages(
|
||
[i.to_msg_template() for i in history] + [input_msg])
|
||
print(chat_prompt)
|
||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||
# Begin a task that runs in the background.
|
||
task = asyncio.create_task(wrap_done(
|
||
chain.acall({"input": query}),
|
||
callback.done),
|
||
)
|
||
|
||
if stream:
|
||
async for token in callback.aiter():
|
||
# Use server-sent-events to stream the response
|
||
yield token
|
||
else:
|
||
answer = ""
|
||
async for token in callback.aiter():
|
||
answer += token
|
||
yield answer
|
||
|
||
await task
|
||
|
||
return StreamingResponse(chat_iterator(query=query,
|
||
history=history,
|
||
model_name=model_name,
|
||
prompt_name=prompt_name),
|
||
media_type="text/event-stream")
|