import streamlit as st import torch from transformers import AutoModel, AutoTokenizer from api import get_docs from memory import MyConversationBufferWindowMemory # 设置页面标题、图标和布局 st.set_page_config( page_title="ChatGLM3-6B 演示", page_icon=":robot:", layout="wide" ) # 设置为模型ID或本地文件夹路径 model_path = "../THUDM/chatglm3-6b" @st.cache_resource def get_model(): tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).cuda() # 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量 # from utils import load_model_on_gpus # model = load_model_on_gpus("THUDM/chatglm3-6b", num_gpus=2) model = model.eval() return tokenizer, model # 加载Chatglm3的model和tokenizer tokenizer, model = get_model() # 初始化历史记录和past key values if "history" not in st.session_state: st.session_state.history = [] if "past_key_values" not in st.session_state: st.session_state.past_key_values = None # 设置max_length、top_p和temperature max_length = st.sidebar.slider("max_length", 0, 32768, 8192, step=1) top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01) temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.6, step=0.01) # 清理会话历史 buttonClean = st.sidebar.button("清理会话历史", key="clean") if buttonClean: st.session_state.history = [] st.session_state.past_key_values = None if torch.cuda.is_available(): torch.cuda.empty_cache() st.rerun() # 渲染聊天历史记录 for i, message in enumerate(st.session_state.history): if message["role"] == "user": with st.chat_message(name="user", avatar="user"): st.markdown(message["content"]) else: with st.chat_message(name="assistant", avatar="assistant"): st.markdown(message["content"]) # 输入框和输出框 with st.chat_message(name="user", avatar="user"): input_placeholder = st.empty() with st.chat_message(name="assistant", avatar="assistant"): message_placeholder = st.empty() # system_prompt = "请根据上下文回答我的问题。答案必须是中文。" system_prompt = "" memory = MyConversationBufferWindowMemory(k=2) def build_prompt(prompt_text): h = memory.load_memory_variables({})['history'] prompt = """你是一个聪明的AI助手,你需要通过已知信息和人类与AI助手之间的友好对话来回答人类的问题。\n""" prompt += f"<已知信息>:{get_docs(prompt_text)}\n" prompt += """下面是人类和AI助手之间的友好对话。AI助手很会健谈,并从其上下文中提供了许多具体细节。如果AI助手不知道问题的答案,它会如实地说它不知道。 当前对话:\n""" prompt += h prompt += f"\n人类:{prompt_text}\n" prompt += f"\nAI助手:" return prompt # 获取用户输入 prompt_text = st.chat_input("请输入您的问题") flag = True # 如果用户输入了内容,则生成回复 if prompt_text: input_placeholder.markdown(prompt_text) history = st.session_state.history past_key_values = st.session_state.past_key_values # 这里进行测试,将context输入进去 prompt = build_prompt(prompt_text) print(prompt) for response, history, past_key_values in model.stream_chat( tokenizer, prompt_text, history, past_key_values=past_key_values, max_length=max_length, top_p=top_p, temperature=temperature, return_past_key_values=True, ): message_placeholder.markdown(response) # 更新历史记录和past key values st.session_state.history = history st.session_state.past_key_values = past_key_values