import sys from pathlib import Path root_path = Path(__file__).parent.parent sys.path.append(str(root_path)) from configs import ONLINE_LLM_MODEL from server.model_workers.base import * from server.utils import get_model_worker_config, list_config_llm_models from pprint import pprint import pytest workers = [] for x in list_config_llm_models()["online"]: if x in ONLINE_LLM_MODEL and x not in workers: workers.append(x) print(f"all workers to test: {workers}") # workers = ["qianfan-api"] @pytest.mark.parametrize("worker", workers) def test_chat(worker): params = ApiChatParams( messages = [ {"role": "user", "content": "你是谁"}, ], ) print(f"\nchat with {worker} \n") worker_class = get_model_worker_config(worker)["worker_class"] for x in worker_class().do_chat(params): pprint(x) assert isinstance(x, dict) assert x["error_code"] == 0 @pytest.mark.parametrize("worker", workers) def test_embeddings(worker): params = ApiEmbeddingsParams( texts = [ "LangChain-Chatchat (原 Langchain-ChatGLM): 基于 Langchain 与 ChatGLM 等大语言模型的本地知识库问答应用实现。", "一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。", ] ) worker_class = get_model_worker_config(worker)["worker_class"] if worker_class.can_embedding(): print(f"\embeddings with {worker} \n") resp = worker_class().do_embeddings(params) pprint(resp, depth=2) assert resp["code"] == 200 assert "data" in resp embeddings = resp["data"] assert isinstance(embeddings, list) and len(embeddings) > 0 assert isinstance(embeddings[0], list) and len(embeddings[0]) > 0 assert isinstance(embeddings[0][0], float) print("向量长度:", len(embeddings[0])) # @pytest.mark.parametrize("worker", workers) # def test_completion(worker): # params = ApiCompletionParams(prompt="五十六个民族") # print(f"\completion with {worker} \n") # worker_class = get_model_worker_config(worker)["worker_class"] # resp = worker_class().do_completion(params) # pprint(resp)