147 lines
5.1 KiB
Python
147 lines
5.1 KiB
Python
|
import json
|
|||
|
|
|||
|
import streamlit as st
|
|||
|
import torch
|
|||
|
from transformers import AutoModel, AutoTokenizer
|
|||
|
|
|||
|
# from api import get_docs
|
|||
|
from server.knowledge_base.kb_doc_api import search_docs
|
|||
|
|
|||
|
# 设置页面标题、图标和布局
|
|||
|
st.set_page_config(
|
|||
|
page_title="ChatGLM3-6B 演示",
|
|||
|
page_icon=":robot:",
|
|||
|
layout="wide"
|
|||
|
)
|
|||
|
|
|||
|
# 设置为模型ID或本地文件夹路径
|
|||
|
model_path = "THUDM/chatglm3-6b-32k"
|
|||
|
|
|||
|
|
|||
|
def get_docs(query, top_k, score_threshold, knowledge_base_name):
|
|||
|
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
|
|||
|
context1 = "\n".join([doc.page_content for doc in docs])
|
|||
|
return context1
|
|||
|
|
|||
|
|
|||
|
@st.cache_resource
|
|||
|
def get_model():
|
|||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|||
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).cuda()
|
|||
|
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
|
|||
|
# from utils import load_model_on_gpus
|
|||
|
# model = load_model_on_gpus("THUDM/chatglm3-6b", num_gpus=2)
|
|||
|
model = model.eval()
|
|||
|
return tokenizer, model
|
|||
|
|
|||
|
|
|||
|
# 加载Chatglm3的model和tokenizer
|
|||
|
tokenizer, model = get_model()
|
|||
|
|
|||
|
system_prompt = """你是一个农业领域的AI助手,你需要通过已知信息和历史对话来回答人类的问题。
|
|||
|
特别注意:已知信息不一定是正确答案,还要根据对话的历史问题和答案进行思考回答,如果找不到答案,请用自己的知识进行回答,不可以乱回答!!!
|
|||
|
答案使用中文。\n"""
|
|||
|
|
|||
|
# 初始化历史记录和past key values
|
|||
|
if "history" not in st.session_state:
|
|||
|
st.session_state.history = [{'role': 'system', 'content': system_prompt}]
|
|||
|
if "past_key_values" not in st.session_state:
|
|||
|
st.session_state.past_key_values = None
|
|||
|
if "all_prompt_text" not in st.session_state:
|
|||
|
st.session_state.all_prompt_text = []
|
|||
|
|
|||
|
# 设置max_length、top_p和temperature
|
|||
|
max_length = st.sidebar.slider("max_length", 0, 32768, 32768, step=1024)
|
|||
|
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
|
|||
|
temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.6, step=0.01)
|
|||
|
|
|||
|
# 清理会话历史
|
|||
|
buttonClean = st.sidebar.button("清理会话历史", key="clean")
|
|||
|
if buttonClean:
|
|||
|
st.session_state.history = []
|
|||
|
st.session_state.past_key_values = None
|
|||
|
if torch.cuda.is_available():
|
|||
|
torch.cuda.empty_cache()
|
|||
|
st.rerun()
|
|||
|
|
|||
|
# 渲染聊天历史记录
|
|||
|
for i, message in enumerate(st.session_state.history):
|
|||
|
if message["role"] == "user":
|
|||
|
with st.chat_message(name="user", avatar="user"):
|
|||
|
st.markdown(message["content"])
|
|||
|
else:
|
|||
|
with st.chat_message(name="assistant", avatar="assistant"):
|
|||
|
st.markdown(message["content"])
|
|||
|
|
|||
|
# 输入框和输出框
|
|||
|
with st.chat_message(name="user", avatar="user"):
|
|||
|
input_placeholder = st.empty()
|
|||
|
with st.chat_message(name="assistant", avatar="assistant"):
|
|||
|
message_placeholder = st.empty()
|
|||
|
|
|||
|
|
|||
|
def build_prompt(prompt_text, new_query):
|
|||
|
knowledge_base_name = 'agriculture'
|
|||
|
context = get_docs(new_query, 3, 1, knowledge_base_name)
|
|||
|
print("query:", new_query)
|
|||
|
print("context:", context)
|
|||
|
prompt = f"\n\n<已知信息>:\n{context}\n</已知信息>\n\n"
|
|||
|
prompt += f"\n\n<问题>:{prompt_text}</问题>\n\n"
|
|||
|
return prompt
|
|||
|
|
|||
|
|
|||
|
# 获取用户输入
|
|||
|
prompt_text = st.chat_input("请输入您的问题")
|
|||
|
# 如果用户输入了内容,则生成回复
|
|||
|
if prompt_text:
|
|||
|
input_placeholder.markdown(prompt_text)
|
|||
|
history = st.session_state.history
|
|||
|
with open('a.json', 'w') as f:
|
|||
|
json.dump(history, f, ensure_ascii=False)
|
|||
|
past_key_values = st.session_state.past_key_values
|
|||
|
new_query = ""
|
|||
|
assistants = []
|
|||
|
# 历史问题
|
|||
|
st.session_state.all_prompt_text.append(prompt_text)
|
|||
|
# 历史助手
|
|||
|
for h in history:
|
|||
|
# 助手
|
|||
|
if h['role'] == 'assistant':
|
|||
|
assistants.append(h['content'])
|
|||
|
# 将历史问题和历史助手组合成新问题
|
|||
|
for i in range(len(st.session_state.all_prompt_text)):
|
|||
|
new_query += st.session_state.all_prompt_text[i]
|
|||
|
if i < len(st.session_state.all_prompt_text) - 1:
|
|||
|
new_query += ","
|
|||
|
else:
|
|||
|
new_query += "?"
|
|||
|
if i < len(assistants):
|
|||
|
new_query += assistants[i]
|
|||
|
history = []
|
|||
|
for k, v in enumerate(assistants):
|
|||
|
a = assistants[k]
|
|||
|
q = st.session_state.all_prompt_text[k]
|
|||
|
history.append({'role': 'user', 'content': q})
|
|||
|
history.append({'role': 'user', 'content': a})
|
|||
|
prompt = build_prompt(prompt_text, new_query)
|
|||
|
|
|||
|
# TODO
|
|||
|
# 控制历史信息、滑动窗口的长度!
|
|||
|
|
|||
|
for response, history, past_key_values in model.stream_chat(
|
|||
|
tokenizer,
|
|||
|
prompt,
|
|||
|
history,
|
|||
|
past_key_values=past_key_values,
|
|||
|
max_length=max_length,
|
|||
|
top_p=top_p,
|
|||
|
temperature=temperature,
|
|||
|
return_past_key_values=True,
|
|||
|
):
|
|||
|
message_placeholder.markdown(response)
|
|||
|
# 历史assistant
|
|||
|
# print(history)
|
|||
|
# 更新历史记录和past key values
|
|||
|
st.session_state.history = history
|
|||
|
st.session_state.past_key_values = past_key_values
|