60 lines
3.2 KiB
Python
60 lines
3.2 KiB
Python
|
import os
|
|||
|
import platform
|
|||
|
import signal
|
|||
|
from transformers import AutoTokenizer, AutoModel
|
|||
|
import readline
|
|||
|
|
|||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
|
|||
|
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).cuda()
|
|||
|
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
|
|||
|
# from utils import load_model_on_gpus
|
|||
|
# model = load_model_on_gpus("THUDM/chatglm3-6b", num_gpus=2)
|
|||
|
model = model.eval()
|
|||
|
|
|||
|
os_name = platform.system()
|
|||
|
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
|||
|
stop_stream = False
|
|||
|
|
|||
|
|
|||
|
def build_prompt(history):
|
|||
|
prompt = "欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"
|
|||
|
for query, response in history:
|
|||
|
prompt += f"\n\n用户:{query}"
|
|||
|
prompt += f"\n\nChatGLM3-6B:{response}"
|
|||
|
return prompt
|
|||
|
|
|||
|
|
|||
|
def signal_handler(signal, frame):
|
|||
|
global stop_stream
|
|||
|
stop_stream = True
|
|||
|
|
|||
|
tools = [{'name': 'track', 'description': '追踪指定股票的实时价格', 'parameters': {'type': 'object', 'properties': {'symbol': {'description': '需要追踪的股票代码'}}, 'required': []}}, {'name': '/text-to-speech', 'description': '将文本转换为语音', 'parameters': {'type': 'object', 'properties': {'text': {'description': '需要转换成语音的文本'}, 'voice': {'description': '要使用的语音类型(男声、女声等)'}, 'speed': {'description': '语音的速度(快、中等、慢等)'}}, 'required': []}}, {'name': '/image_resizer', 'description': '调整图片的大小和尺寸', 'parameters': {'type': 'object', 'properties': {'image_file': {'description': '需要调整大小的图片文件'}, 'width': {'description': '需要调整的宽度值'}, 'height': {'description': '需要调整的高度值'}}, 'required': []}}, {'name': '/foodimg', 'description': '通过给定的食品名称生成该食品的图片', 'parameters': {'type': 'object', 'properties': {'food_name': {'description': '需要生成图片的食品名称'}}, 'required': []}}]
|
|||
|
system_item = {"role": "system",
|
|||
|
"content": "Answer the following questions as best as you can. You have access to the following tools:",
|
|||
|
"tools": tools}
|
|||
|
|
|||
|
def main():
|
|||
|
past_key_values, history = None, [system_item]
|
|||
|
role = "user"
|
|||
|
global stop_stream
|
|||
|
print("欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
|||
|
while True:
|
|||
|
query = input("\n用户:") if role == "user" else input("\n结果:")
|
|||
|
if query.strip() == "stop":
|
|||
|
break
|
|||
|
if query.strip() == "clear":
|
|||
|
past_key_values, history = None, [system_item]
|
|||
|
role = "user"
|
|||
|
os.system(clear_command)
|
|||
|
print("欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
|||
|
continue
|
|||
|
print("\nChatGLM:", end="")
|
|||
|
response, history = model.chat(tokenizer, query, history=history, role=role)
|
|||
|
print(response, end="", flush=True)
|
|||
|
print("")
|
|||
|
if isinstance(response, dict):
|
|||
|
role = "observation"
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
main()
|