88 lines
2.7 KiB
Python
88 lines
2.7 KiB
Python
|
from configs.basic_config import LOG_PATH
|
|||
|
import fastchat.constants
|
|||
|
fastchat.constants.LOGDIR = LOG_PATH
|
|||
|
from fastchat.serve.base_model_worker import BaseModelWorker
|
|||
|
import uuid
|
|||
|
import json
|
|||
|
import sys
|
|||
|
from pydantic import BaseModel
|
|||
|
import fastchat
|
|||
|
import asyncio
|
|||
|
from typing import Dict, List
|
|||
|
|
|||
|
|
|||
|
# 恢复被fastchat覆盖的标准输出
|
|||
|
sys.stdout = sys.__stdout__
|
|||
|
sys.stderr = sys.__stderr__
|
|||
|
|
|||
|
|
|||
|
class ApiModelOutMsg(BaseModel):
|
|||
|
error_code: int = 0
|
|||
|
text: str
|
|||
|
|
|||
|
class ApiModelWorker(BaseModelWorker):
|
|||
|
BASE_URL: str
|
|||
|
SUPPORT_MODELS: List
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
model_names: List[str],
|
|||
|
controller_addr: str,
|
|||
|
worker_addr: str,
|
|||
|
context_len: int = 2048,
|
|||
|
**kwargs,
|
|||
|
):
|
|||
|
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
|
|||
|
kwargs.setdefault("model_path", "")
|
|||
|
kwargs.setdefault("limit_worker_concurrency", 5)
|
|||
|
super().__init__(model_names=model_names,
|
|||
|
controller_addr=controller_addr,
|
|||
|
worker_addr=worker_addr,
|
|||
|
**kwargs)
|
|||
|
self.context_len = context_len
|
|||
|
self.semaphore = asyncio.Semaphore(self.limit_worker_concurrency)
|
|||
|
self.init_heart_beat()
|
|||
|
|
|||
|
def count_token(self, params):
|
|||
|
# TODO:需要完善
|
|||
|
# print("count token")
|
|||
|
prompt = params["prompt"]
|
|||
|
return {"count": len(str(prompt)), "error_code": 0}
|
|||
|
|
|||
|
def generate_stream_gate(self, params):
|
|||
|
self.call_ct += 1
|
|||
|
|
|||
|
def generate_gate(self, params):
|
|||
|
for x in self.generate_stream_gate(params):
|
|||
|
pass
|
|||
|
return json.loads(x[:-1].decode())
|
|||
|
|
|||
|
def get_embeddings(self, params):
|
|||
|
print("embedding")
|
|||
|
# print(params)
|
|||
|
|
|||
|
# help methods
|
|||
|
def get_config(self):
|
|||
|
from server.utils import get_model_worker_config
|
|||
|
return get_model_worker_config(self.model_names[0])
|
|||
|
|
|||
|
def prompt_to_messages(self, prompt: str) -> List[Dict]:
|
|||
|
'''
|
|||
|
将prompt字符串拆分成messages.
|
|||
|
'''
|
|||
|
result = []
|
|||
|
user_role = self.conv.roles[0]
|
|||
|
ai_role = self.conv.roles[1]
|
|||
|
user_start = user_role + ":"
|
|||
|
ai_start = ai_role + ":"
|
|||
|
for msg in prompt.split(self.conv.sep)[1:-1]:
|
|||
|
if msg.startswith(user_start):
|
|||
|
if content := msg[len(user_start):].strip():
|
|||
|
result.append({"role": user_role, "content": content})
|
|||
|
elif msg.startswith(ai_start):
|
|||
|
if content := msg[len(ai_start):].strip():
|
|||
|
result.append({"role": ai_role, "content": content})
|
|||
|
else:
|
|||
|
raise RuntimeError(f"unknown role in msg: {msg}")
|
|||
|
return result
|