406 lines
17 KiB
Python
406 lines
17 KiB
Python
|
import os
|
|||
|
from transformers import AutoTokenizer
|
|||
|
from configs import (
|
|||
|
EMBEDDING_MODEL,
|
|||
|
KB_ROOT_PATH,
|
|||
|
CHUNK_SIZE,
|
|||
|
OVERLAP_SIZE,
|
|||
|
ZH_TITLE_ENHANCE,
|
|||
|
logger,
|
|||
|
log_verbose,
|
|||
|
text_splitter_dict,
|
|||
|
LLM_MODEL,
|
|||
|
TEXT_SPLITTER_NAME,
|
|||
|
)
|
|||
|
import importlib
|
|||
|
from text_splitter import zh_title_enhance as func_zh_title_enhance
|
|||
|
import langchain.document_loaders
|
|||
|
from langchain.docstore.document import Document
|
|||
|
from langchain.text_splitter import TextSplitter
|
|||
|
from pathlib import Path
|
|||
|
import json
|
|||
|
from concurrent.futures import ThreadPoolExecutor
|
|||
|
from server.utils import run_in_thread_pool, embedding_device, get_model_worker_config
|
|||
|
import io
|
|||
|
from typing import List, Union, Callable, Dict, Optional, Tuple, Generator
|
|||
|
import chardet
|
|||
|
|
|||
|
|
|||
|
def validate_kb_name(knowledge_base_id: str) -> bool:
|
|||
|
# 检查是否包含预期外的字符或路径攻击关键字
|
|||
|
if "../" in knowledge_base_id:
|
|||
|
return False
|
|||
|
return True
|
|||
|
|
|||
|
|
|||
|
def get_kb_path(knowledge_base_name: str):
|
|||
|
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
|
|||
|
|
|||
|
|
|||
|
def get_doc_path(knowledge_base_name: str):
|
|||
|
return os.path.join(get_kb_path(knowledge_base_name), "content")
|
|||
|
|
|||
|
|
|||
|
def get_vs_path(knowledge_base_name: str, vector_name: str):
|
|||
|
return os.path.join(get_kb_path(knowledge_base_name), vector_name)
|
|||
|
|
|||
|
|
|||
|
def get_file_path(knowledge_base_name: str, doc_name: str):
|
|||
|
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
|
|||
|
|
|||
|
|
|||
|
def list_kbs_from_folder():
|
|||
|
return [f for f in os.listdir(KB_ROOT_PATH)
|
|||
|
if os.path.isdir(os.path.join(KB_ROOT_PATH, f))]
|
|||
|
|
|||
|
|
|||
|
def list_files_from_folder(kb_name: str):
|
|||
|
doc_path = get_doc_path(kb_name)
|
|||
|
return [file for file in os.listdir(doc_path)
|
|||
|
if os.path.isfile(os.path.join(doc_path, file))]
|
|||
|
|
|||
|
|
|||
|
def load_embeddings(model: str = EMBEDDING_MODEL, device: str = embedding_device()):
|
|||
|
'''
|
|||
|
从缓存中加载embeddings,可以避免多线程时竞争加载。
|
|||
|
'''
|
|||
|
from server.knowledge_base.kb_cache.base import embeddings_pool
|
|||
|
return embeddings_pool.load_embeddings(model=model, device=device)
|
|||
|
|
|||
|
|
|||
|
LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
|
|||
|
"UnstructuredMarkdownLoader": ['.md'],
|
|||
|
"CustomJSONLoader": [".json"],
|
|||
|
"CSVLoader": [".csv"],
|
|||
|
"RapidOCRPDFLoader": [".pdf"],
|
|||
|
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
|
|||
|
"UnstructuredFileLoader": ['.eml', '.msg', '.rst',
|
|||
|
'.rtf', '.txt', '.xml',
|
|||
|
'.docx', '.epub', '.odt',
|
|||
|
'.ppt', '.pptx', '.tsv'],
|
|||
|
}
|
|||
|
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
|
|||
|
|
|||
|
|
|||
|
class CustomJSONLoader(langchain.document_loaders.JSONLoader):
|
|||
|
'''
|
|||
|
langchain的JSONLoader需要jq,在win上使用不便,进行替代。针对langchain==0.0.286
|
|||
|
'''
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
file_path: Union[str, Path],
|
|||
|
content_key: Optional[str] = None,
|
|||
|
metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None,
|
|||
|
text_content: bool = True,
|
|||
|
json_lines: bool = False,
|
|||
|
):
|
|||
|
"""Initialize the JSONLoader.
|
|||
|
|
|||
|
Args:
|
|||
|
file_path (Union[str, Path]): The path to the JSON or JSON Lines file.
|
|||
|
content_key (str): The key to use to extract the content from the JSON if
|
|||
|
results to a list of objects (dict).
|
|||
|
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
|
|||
|
object extracted by the jq_schema and the default metadata and returns
|
|||
|
a dict of the updated metadata.
|
|||
|
text_content (bool): Boolean flag to indicate whether the content is in
|
|||
|
string format, default to True.
|
|||
|
json_lines (bool): Boolean flag to indicate whether the input is in
|
|||
|
JSON Lines format.
|
|||
|
"""
|
|||
|
self.file_path = Path(file_path).resolve()
|
|||
|
self._content_key = content_key
|
|||
|
self._metadata_func = metadata_func
|
|||
|
self._text_content = text_content
|
|||
|
self._json_lines = json_lines
|
|||
|
|
|||
|
def _parse(self, content: str, docs: List[Document]) -> None:
|
|||
|
"""Convert given content to documents."""
|
|||
|
data = json.loads(content)
|
|||
|
|
|||
|
# Perform some validation
|
|||
|
# This is not a perfect validation, but it should catch most cases
|
|||
|
# and prevent the user from getting a cryptic error later on.
|
|||
|
if self._content_key is not None:
|
|||
|
self._validate_content_key(data)
|
|||
|
if self._metadata_func is not None:
|
|||
|
self._validate_metadata_func(data)
|
|||
|
|
|||
|
for i, sample in enumerate(data, len(docs) + 1):
|
|||
|
text = self._get_text(sample=sample)
|
|||
|
metadata = self._get_metadata(
|
|||
|
sample=sample, source=str(self.file_path), seq_num=i
|
|||
|
)
|
|||
|
docs.append(Document(page_content=text, metadata=metadata))
|
|||
|
|
|||
|
|
|||
|
langchain.document_loaders.CustomJSONLoader = CustomJSONLoader
|
|||
|
|
|||
|
|
|||
|
def get_LoaderClass(file_extension):
|
|||
|
for LoaderClass, extensions in LOADER_DICT.items():
|
|||
|
if file_extension in extensions:
|
|||
|
return LoaderClass
|
|||
|
|
|||
|
|
|||
|
# 把一些向量化共用逻辑从KnowledgeFile抽取出来,等langchain支持内存文件的时候,可以将非磁盘文件向量化
|
|||
|
def get_loader(loader_name: str, file_path_or_content: Union[str, bytes, io.StringIO, io.BytesIO]):
|
|||
|
'''
|
|||
|
根据loader_name和文件路径或内容返回文档加载器。
|
|||
|
'''
|
|||
|
try:
|
|||
|
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader"]:
|
|||
|
document_loaders_module = importlib.import_module('document_loaders')
|
|||
|
else:
|
|||
|
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
|||
|
DocumentLoader = getattr(document_loaders_module, loader_name)
|
|||
|
except Exception as e:
|
|||
|
msg = f"为文件{file_path_or_content}查找加载器{loader_name}时出错:{e}"
|
|||
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
|||
|
exc_info=e if log_verbose else None)
|
|||
|
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
|||
|
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
|||
|
|
|||
|
if loader_name == "UnstructuredFileLoader":
|
|||
|
loader = DocumentLoader(file_path_or_content, autodetect_encoding=True)
|
|||
|
elif loader_name == "CSVLoader":
|
|||
|
# 自动识别文件编码类型,避免langchain loader 加载文件报编码错误
|
|||
|
with open(file_path_or_content, 'rb') as struct_file:
|
|||
|
encode_detect = chardet.detect(struct_file.read())
|
|||
|
if encode_detect:
|
|||
|
loader = DocumentLoader(file_path_or_content, encoding=encode_detect["encoding"])
|
|||
|
else:
|
|||
|
loader = DocumentLoader(file_path_or_content, encoding="utf-8")
|
|||
|
|
|||
|
elif loader_name == "JSONLoader":
|
|||
|
loader = DocumentLoader(file_path_or_content, jq_schema=".", text_content=False)
|
|||
|
elif loader_name == "CustomJSONLoader":
|
|||
|
loader = DocumentLoader(file_path_or_content, text_content=False)
|
|||
|
elif loader_name == "UnstructuredMarkdownLoader":
|
|||
|
loader = DocumentLoader(file_path_or_content, mode="elements")
|
|||
|
elif loader_name == "UnstructuredHTMLLoader":
|
|||
|
loader = DocumentLoader(file_path_or_content, mode="elements")
|
|||
|
else:
|
|||
|
loader = DocumentLoader(file_path_or_content)
|
|||
|
return loader
|
|||
|
|
|||
|
|
|||
|
def make_text_splitter(
|
|||
|
splitter_name: str = TEXT_SPLITTER_NAME,
|
|||
|
chunk_size: int = CHUNK_SIZE,
|
|||
|
chunk_overlap: int = OVERLAP_SIZE,
|
|||
|
llm_model: str = LLM_MODEL,
|
|||
|
):
|
|||
|
"""
|
|||
|
根据参数获取特定的分词器
|
|||
|
"""
|
|||
|
splitter_name = splitter_name or "SpacyTextSplitter"
|
|||
|
try:
|
|||
|
if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定
|
|||
|
headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on']
|
|||
|
text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter(
|
|||
|
headers_to_split_on=headers_to_split_on)
|
|||
|
else:
|
|||
|
|
|||
|
try: ## 优先使用用户自定义的text_splitter
|
|||
|
text_splitter_module = importlib.import_module('text_splitter')
|
|||
|
TextSplitter = getattr(text_splitter_module, splitter_name)
|
|||
|
except: ## 否则使用langchain的text_splitter
|
|||
|
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
|||
|
TextSplitter = getattr(text_splitter_module, splitter_name)
|
|||
|
|
|||
|
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
|
|||
|
try:
|
|||
|
text_splitter = TextSplitter.from_tiktoken_encoder(
|
|||
|
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
|||
|
pipeline="zh_core_web_sm",
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap
|
|||
|
)
|
|||
|
except:
|
|||
|
text_splitter = TextSplitter.from_tiktoken_encoder(
|
|||
|
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap
|
|||
|
)
|
|||
|
elif text_splitter_dict[splitter_name]["source"] == "huggingface": ## 从huggingface加载
|
|||
|
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "":
|
|||
|
config = get_model_worker_config(llm_model)
|
|||
|
text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \
|
|||
|
config.get("model_path")
|
|||
|
|
|||
|
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2":
|
|||
|
from transformers import GPT2TokenizerFast
|
|||
|
from langchain.text_splitter import CharacterTextSplitter
|
|||
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
|||
|
else: ## 字符长度加载
|
|||
|
tokenizer = AutoTokenizer.from_pretrained(
|
|||
|
text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
|||
|
trust_remote_code=True)
|
|||
|
text_splitter = TextSplitter.from_huggingface_tokenizer(
|
|||
|
tokenizer=tokenizer,
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap
|
|||
|
)
|
|||
|
else:
|
|||
|
try:
|
|||
|
text_splitter = TextSplitter(
|
|||
|
pipeline="zh_core_web_sm",
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap
|
|||
|
)
|
|||
|
except:
|
|||
|
text_splitter = TextSplitter(
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap
|
|||
|
)
|
|||
|
except Exception as e:
|
|||
|
print(e)
|
|||
|
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
|||
|
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
|
|||
|
text_splitter = TextSplitter(chunk_size=250, chunk_overlap=50)
|
|||
|
return text_splitter
|
|||
|
|
|||
|
class KnowledgeFile:
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
filename: str,
|
|||
|
knowledge_base_name: str
|
|||
|
):
|
|||
|
'''
|
|||
|
对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。
|
|||
|
'''
|
|||
|
self.kb_name = knowledge_base_name
|
|||
|
self.filename = filename
|
|||
|
self.ext = os.path.splitext(filename)[-1].lower()
|
|||
|
if self.ext not in SUPPORTED_EXTS:
|
|||
|
raise ValueError(f"暂未支持的文件格式 {self.ext}")
|
|||
|
self.filepath = get_file_path(knowledge_base_name, filename)
|
|||
|
self.docs = None
|
|||
|
self.splited_docs = None
|
|||
|
self.document_loader_name = get_LoaderClass(self.ext)
|
|||
|
self.text_splitter_name = TEXT_SPLITTER_NAME
|
|||
|
|
|||
|
def file2docs(self, refresh: bool=False):
|
|||
|
if self.docs is None or refresh:
|
|||
|
logger.info(f"{self.document_loader_name} used for {self.filepath}")
|
|||
|
loader = get_loader(self.document_loader_name, self.filepath)
|
|||
|
self.docs = loader.load()
|
|||
|
return self.docs
|
|||
|
|
|||
|
def docs2texts(
|
|||
|
self,
|
|||
|
docs: List[Document] = None,
|
|||
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|||
|
refresh: bool = False,
|
|||
|
chunk_size: int = CHUNK_SIZE,
|
|||
|
chunk_overlap: int = OVERLAP_SIZE,
|
|||
|
text_splitter: TextSplitter = None,
|
|||
|
):
|
|||
|
docs = docs or self.file2docs(refresh=refresh)
|
|||
|
if not docs:
|
|||
|
return []
|
|||
|
if self.ext not in [".csv"]:
|
|||
|
if text_splitter is None:
|
|||
|
text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|||
|
if self.text_splitter_name == "MarkdownHeaderTextSplitter":
|
|||
|
docs = text_splitter.split_text(docs[0].page_content)
|
|||
|
for doc in docs:
|
|||
|
# 如果文档有元数据
|
|||
|
if doc.metadata:
|
|||
|
doc.metadata["source"] = os.path.basename(self.filepath)
|
|||
|
else:
|
|||
|
docs = text_splitter.split_documents(docs)
|
|||
|
|
|||
|
print(f"文档切分示例:{docs[0]}")
|
|||
|
if zh_title_enhance:
|
|||
|
docs = func_zh_title_enhance(docs)
|
|||
|
self.splited_docs = docs
|
|||
|
return self.splited_docs
|
|||
|
|
|||
|
def file2text(
|
|||
|
self,
|
|||
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|||
|
refresh: bool = False,
|
|||
|
chunk_size: int = CHUNK_SIZE,
|
|||
|
chunk_overlap: int = OVERLAP_SIZE,
|
|||
|
text_splitter: TextSplitter = None,
|
|||
|
):
|
|||
|
if self.splited_docs is None or refresh:
|
|||
|
docs = self.file2docs()
|
|||
|
self.splited_docs = self.docs2texts(docs=docs,
|
|||
|
zh_title_enhance=zh_title_enhance,
|
|||
|
refresh=refresh,
|
|||
|
chunk_size=chunk_size,
|
|||
|
chunk_overlap=chunk_overlap,
|
|||
|
text_splitter=text_splitter)
|
|||
|
return self.splited_docs
|
|||
|
|
|||
|
def file_exist(self):
|
|||
|
return os.path.isfile(self.filepath)
|
|||
|
|
|||
|
def get_mtime(self):
|
|||
|
return os.path.getmtime(self.filepath)
|
|||
|
|
|||
|
def get_size(self):
|
|||
|
return os.path.getsize(self.filepath)
|
|||
|
|
|||
|
|
|||
|
def files2docs_in_thread(
|
|||
|
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
|
|||
|
chunk_size: int = CHUNK_SIZE,
|
|||
|
chunk_overlap: int = OVERLAP_SIZE,
|
|||
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|||
|
pool: ThreadPoolExecutor = None,
|
|||
|
) -> Generator:
|
|||
|
'''
|
|||
|
利用多线程批量将磁盘文件转化成langchain Document.
|
|||
|
如果传入参数是Tuple,形式为(filename, kb_name)
|
|||
|
生成器返回值为 status, (kb_name, file_name, docs | error)
|
|||
|
'''
|
|||
|
def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]:
|
|||
|
try:
|
|||
|
return True, (file.kb_name, file.filename, file.file2text(**kwargs))
|
|||
|
except Exception as e:
|
|||
|
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
|
|||
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
|||
|
exc_info=e if log_verbose else None)
|
|||
|
return False, (file.kb_name, file.filename, msg)
|
|||
|
|
|||
|
kwargs_list = []
|
|||
|
for i, file in enumerate(files):
|
|||
|
kwargs = {}
|
|||
|
try:
|
|||
|
if isinstance(file, tuple) and len(file) >= 2:
|
|||
|
filename=file[0]
|
|||
|
kb_name=file[1]
|
|||
|
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
|||
|
elif isinstance(file, dict):
|
|||
|
filename = file.pop("filename")
|
|||
|
kb_name = file.pop("kb_name")
|
|||
|
kwargs.update(file)
|
|||
|
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
|||
|
kwargs["file"] = file
|
|||
|
kwargs["chunk_size"] = chunk_size
|
|||
|
kwargs["chunk_overlap"] = chunk_overlap
|
|||
|
kwargs["zh_title_enhance"] = zh_title_enhance
|
|||
|
kwargs_list.append(kwargs)
|
|||
|
except Exception as e:
|
|||
|
yield False, (kb_name, filename, str(e))
|
|||
|
|
|||
|
for result in run_in_thread_pool(func=file2docs, params=kwargs_list, pool=pool):
|
|||
|
yield result
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
from pprint import pprint
|
|||
|
|
|||
|
kb_file = KnowledgeFile(filename="doc1.txt", knowledge_base_name="samples")
|
|||
|
# kb_file.text_splitter_name = "RecursiveCharacterTextSplitter"
|
|||
|
docs = kb_file.file2docs()
|
|||
|
pprint(docs[-1])
|
|||
|
|
|||
|
docs = kb_file.file2text()
|
|||
|
pprint(docs[-1])
|