ai/server/knowledge_base/utils.py

406 lines
17 KiB
Python
Raw Normal View History

2023-12-14 14:26:13 +08:00
import os
from transformers import AutoTokenizer
from configs import (
EMBEDDING_MODEL,
KB_ROOT_PATH,
CHUNK_SIZE,
OVERLAP_SIZE,
ZH_TITLE_ENHANCE,
logger,
log_verbose,
text_splitter_dict,
LLM_MODEL,
TEXT_SPLITTER_NAME,
)
import importlib
from text_splitter import zh_title_enhance as func_zh_title_enhance
import langchain.document_loaders
from langchain.docstore.document import Document
from langchain.text_splitter import TextSplitter
from pathlib import Path
import json
from concurrent.futures import ThreadPoolExecutor
from server.utils import run_in_thread_pool, embedding_device, get_model_worker_config
import io
from typing import List, Union, Callable, Dict, Optional, Tuple, Generator
import chardet
def validate_kb_name(knowledge_base_id: str) -> bool:
# 检查是否包含预期外的字符或路径攻击关键字
if "../" in knowledge_base_id:
return False
return True
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
def get_doc_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "content")
def get_vs_path(knowledge_base_name: str, vector_name: str):
return os.path.join(get_kb_path(knowledge_base_name), vector_name)
def get_file_path(knowledge_base_name: str, doc_name: str):
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
def list_kbs_from_folder():
return [f for f in os.listdir(KB_ROOT_PATH)
if os.path.isdir(os.path.join(KB_ROOT_PATH, f))]
def list_files_from_folder(kb_name: str):
doc_path = get_doc_path(kb_name)
return [file for file in os.listdir(doc_path)
if os.path.isfile(os.path.join(doc_path, file))]
def load_embeddings(model: str = EMBEDDING_MODEL, device: str = embedding_device()):
'''
从缓存中加载embeddings可以避免多线程时竞争加载
'''
from server.knowledge_base.kb_cache.base import embeddings_pool
return embeddings_pool.load_embeddings(model=model, device=device)
LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
"UnstructuredMarkdownLoader": ['.md'],
"CustomJSONLoader": [".json"],
"CSVLoader": [".csv"],
"RapidOCRPDFLoader": [".pdf"],
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
"UnstructuredFileLoader": ['.eml', '.msg', '.rst',
'.rtf', '.txt', '.xml',
'.docx', '.epub', '.odt',
'.ppt', '.pptx', '.tsv'],
}
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
class CustomJSONLoader(langchain.document_loaders.JSONLoader):
'''
langchain的JSONLoader需要jq在win上使用不便进行替代针对langchain==0.0.286
'''
def __init__(
self,
file_path: Union[str, Path],
content_key: Optional[str] = None,
metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None,
text_content: bool = True,
json_lines: bool = False,
):
"""Initialize the JSONLoader.
Args:
file_path (Union[str, Path]): The path to the JSON or JSON Lines file.
content_key (str): The key to use to extract the content from the JSON if
results to a list of objects (dict).
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
object extracted by the jq_schema and the default metadata and returns
a dict of the updated metadata.
text_content (bool): Boolean flag to indicate whether the content is in
string format, default to True.
json_lines (bool): Boolean flag to indicate whether the input is in
JSON Lines format.
"""
self.file_path = Path(file_path).resolve()
self._content_key = content_key
self._metadata_func = metadata_func
self._text_content = text_content
self._json_lines = json_lines
def _parse(self, content: str, docs: List[Document]) -> None:
"""Convert given content to documents."""
data = json.loads(content)
# Perform some validation
# This is not a perfect validation, but it should catch most cases
# and prevent the user from getting a cryptic error later on.
if self._content_key is not None:
self._validate_content_key(data)
if self._metadata_func is not None:
self._validate_metadata_func(data)
for i, sample in enumerate(data, len(docs) + 1):
text = self._get_text(sample=sample)
metadata = self._get_metadata(
sample=sample, source=str(self.file_path), seq_num=i
)
docs.append(Document(page_content=text, metadata=metadata))
langchain.document_loaders.CustomJSONLoader = CustomJSONLoader
def get_LoaderClass(file_extension):
for LoaderClass, extensions in LOADER_DICT.items():
if file_extension in extensions:
return LoaderClass
# 把一些向量化共用逻辑从KnowledgeFile抽取出来等langchain支持内存文件的时候可以将非磁盘文件向量化
def get_loader(loader_name: str, file_path_or_content: Union[str, bytes, io.StringIO, io.BytesIO]):
'''
根据loader_name和文件路径或内容返回文档加载器
'''
try:
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader"]:
document_loaders_module = importlib.import_module('document_loaders')
else:
document_loaders_module = importlib.import_module('langchain.document_loaders')
DocumentLoader = getattr(document_loaders_module, loader_name)
except Exception as e:
msg = f"为文件{file_path_or_content}查找加载器{loader_name}时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
document_loaders_module = importlib.import_module('langchain.document_loaders')
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
if loader_name == "UnstructuredFileLoader":
loader = DocumentLoader(file_path_or_content, autodetect_encoding=True)
elif loader_name == "CSVLoader":
# 自动识别文件编码类型避免langchain loader 加载文件报编码错误
with open(file_path_or_content, 'rb') as struct_file:
encode_detect = chardet.detect(struct_file.read())
if encode_detect:
loader = DocumentLoader(file_path_or_content, encoding=encode_detect["encoding"])
else:
loader = DocumentLoader(file_path_or_content, encoding="utf-8")
elif loader_name == "JSONLoader":
loader = DocumentLoader(file_path_or_content, jq_schema=".", text_content=False)
elif loader_name == "CustomJSONLoader":
loader = DocumentLoader(file_path_or_content, text_content=False)
elif loader_name == "UnstructuredMarkdownLoader":
loader = DocumentLoader(file_path_or_content, mode="elements")
elif loader_name == "UnstructuredHTMLLoader":
loader = DocumentLoader(file_path_or_content, mode="elements")
else:
loader = DocumentLoader(file_path_or_content)
return loader
def make_text_splitter(
splitter_name: str = TEXT_SPLITTER_NAME,
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
llm_model: str = LLM_MODEL,
):
"""
根据参数获取特定的分词器
"""
splitter_name = splitter_name or "SpacyTextSplitter"
try:
if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定
headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on']
text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on)
else:
try: ## 优先使用用户自定义的text_splitter
text_splitter_module = importlib.import_module('text_splitter')
TextSplitter = getattr(text_splitter_module, splitter_name)
except: ## 否则使用langchain的text_splitter
text_splitter_module = importlib.import_module('langchain.text_splitter')
TextSplitter = getattr(text_splitter_module, splitter_name)
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
try:
text_splitter = TextSplitter.from_tiktoken_encoder(
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
pipeline="zh_core_web_sm",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except:
text_splitter = TextSplitter.from_tiktoken_encoder(
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
elif text_splitter_dict[splitter_name]["source"] == "huggingface": ## 从huggingface加载
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "":
config = get_model_worker_config(llm_model)
text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \
config.get("model_path")
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2":
from transformers import GPT2TokenizerFast
from langchain.text_splitter import CharacterTextSplitter
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
else: ## 字符长度加载
tokenizer = AutoTokenizer.from_pretrained(
text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
trust_remote_code=True)
text_splitter = TextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
else:
try:
text_splitter = TextSplitter(
pipeline="zh_core_web_sm",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except:
text_splitter = TextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except Exception as e:
print(e)
text_splitter_module = importlib.import_module('langchain.text_splitter')
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
text_splitter = TextSplitter(chunk_size=250, chunk_overlap=50)
return text_splitter
class KnowledgeFile:
def __init__(
self,
filename: str,
knowledge_base_name: str
):
'''
对应知识库目录中的文件必须是磁盘上存在的才能进行向量化等操作
'''
self.kb_name = knowledge_base_name
self.filename = filename
self.ext = os.path.splitext(filename)[-1].lower()
if self.ext not in SUPPORTED_EXTS:
raise ValueError(f"暂未支持的文件格式 {self.ext}")
self.filepath = get_file_path(knowledge_base_name, filename)
self.docs = None
self.splited_docs = None
self.document_loader_name = get_LoaderClass(self.ext)
self.text_splitter_name = TEXT_SPLITTER_NAME
def file2docs(self, refresh: bool=False):
if self.docs is None or refresh:
logger.info(f"{self.document_loader_name} used for {self.filepath}")
loader = get_loader(self.document_loader_name, self.filepath)
self.docs = loader.load()
return self.docs
def docs2texts(
self,
docs: List[Document] = None,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
refresh: bool = False,
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
text_splitter: TextSplitter = None,
):
docs = docs or self.file2docs(refresh=refresh)
if not docs:
return []
if self.ext not in [".csv"]:
if text_splitter is None:
text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
if self.text_splitter_name == "MarkdownHeaderTextSplitter":
docs = text_splitter.split_text(docs[0].page_content)
for doc in docs:
# 如果文档有元数据
if doc.metadata:
doc.metadata["source"] = os.path.basename(self.filepath)
else:
docs = text_splitter.split_documents(docs)
print(f"文档切分示例:{docs[0]}")
if zh_title_enhance:
docs = func_zh_title_enhance(docs)
self.splited_docs = docs
return self.splited_docs
def file2text(
self,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
refresh: bool = False,
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
text_splitter: TextSplitter = None,
):
if self.splited_docs is None or refresh:
docs = self.file2docs()
self.splited_docs = self.docs2texts(docs=docs,
zh_title_enhance=zh_title_enhance,
refresh=refresh,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
text_splitter=text_splitter)
return self.splited_docs
def file_exist(self):
return os.path.isfile(self.filepath)
def get_mtime(self):
return os.path.getmtime(self.filepath)
def get_size(self):
return os.path.getsize(self.filepath)
def files2docs_in_thread(
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
pool: ThreadPoolExecutor = None,
) -> Generator:
'''
利用多线程批量将磁盘文件转化成langchain Document.
如果传入参数是Tuple形式为(filename, kb_name)
生成器返回值为 status, (kb_name, file_name, docs | error)
'''
def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]:
try:
return True, (file.kb_name, file.filename, file.file2text(**kwargs))
except Exception as e:
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
return False, (file.kb_name, file.filename, msg)
kwargs_list = []
for i, file in enumerate(files):
kwargs = {}
try:
if isinstance(file, tuple) and len(file) >= 2:
filename=file[0]
kb_name=file[1]
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
elif isinstance(file, dict):
filename = file.pop("filename")
kb_name = file.pop("kb_name")
kwargs.update(file)
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
kwargs["file"] = file
kwargs["chunk_size"] = chunk_size
kwargs["chunk_overlap"] = chunk_overlap
kwargs["zh_title_enhance"] = zh_title_enhance
kwargs_list.append(kwargs)
except Exception as e:
yield False, (kb_name, filename, str(e))
for result in run_in_thread_pool(func=file2docs, params=kwargs_list, pool=pool):
yield result
if __name__ == "__main__":
from pprint import pprint
kb_file = KnowledgeFile(filename="doc1.txt", knowledge_base_name="samples")
# kb_file.text_splitter_name = "RecursiveCharacterTextSplitter"
docs = kb_file.file2docs()
pprint(docs[-1])
docs = kb_file.file2text()
pprint(docs[-1])