99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
|
from typing import List, Dict, Optional
|
||
|
from langchain.embeddings.base import Embeddings
|
||
|
from langchain.schema import Document
|
||
|
from langchain.vectorstores import Zilliz
|
||
|
from configs import kbs_config
|
||
|
from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter, \
|
||
|
score_threshold_process
|
||
|
from server.knowledge_base.utils import KnowledgeFile
|
||
|
|
||
|
|
||
|
class ZillizKBService(KBService):
|
||
|
zilliz: Zilliz
|
||
|
|
||
|
@staticmethod
|
||
|
def get_collection(zilliz_name):
|
||
|
from pymilvus import Collection
|
||
|
return Collection(zilliz_name)
|
||
|
|
||
|
# def save_vector_store(self):
|
||
|
# if self.zilliz.col:
|
||
|
# self.zilliz.col.flush()
|
||
|
|
||
|
def get_doc_by_id(self, id: str) -> Optional[Document]:
|
||
|
if self.zilliz.col:
|
||
|
data_list = self.zilliz.col.query(expr=f'pk == {id}', output_fields=["*"])
|
||
|
if len(data_list) > 0:
|
||
|
data = data_list[0]
|
||
|
text = data.pop("text")
|
||
|
return Document(page_content=text, metadata=data)
|
||
|
|
||
|
@staticmethod
|
||
|
def search(zilliz_name, content, limit=3):
|
||
|
search_params = {
|
||
|
"metric_type": "IP",
|
||
|
"params": {},
|
||
|
}
|
||
|
c = ZillizKBService.get_collection(zilliz_name)
|
||
|
return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
|
||
|
|
||
|
def do_create_kb(self):
|
||
|
pass
|
||
|
|
||
|
def vs_type(self) -> str:
|
||
|
return SupportedVSType.ZILLIZ
|
||
|
|
||
|
def _load_zilliz(self, embeddings: Embeddings = None):
|
||
|
if embeddings is None:
|
||
|
embeddings = self._load_embeddings()
|
||
|
zilliz_args = kbs_config.get("zilliz")
|
||
|
self.zilliz = Zilliz(embedding_function=EmbeddingsFunAdapter(embeddings),
|
||
|
collection_name=self.kb_name, connection_args=zilliz_args)
|
||
|
|
||
|
|
||
|
def do_init(self):
|
||
|
self._load_zilliz()
|
||
|
|
||
|
def do_drop_kb(self):
|
||
|
if self.zilliz.col:
|
||
|
self.zilliz.col.release()
|
||
|
self.zilliz.col.drop()
|
||
|
|
||
|
def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings):
|
||
|
self._load_zilliz(embeddings=EmbeddingsFunAdapter(embeddings))
|
||
|
return score_threshold_process(score_threshold, top_k, self.zilliz.similarity_search_with_score(query, top_k))
|
||
|
|
||
|
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
||
|
for doc in docs:
|
||
|
for k, v in doc.metadata.items():
|
||
|
doc.metadata[k] = str(v)
|
||
|
for field in self.zilliz.fields:
|
||
|
doc.metadata.setdefault(field, "")
|
||
|
doc.metadata.pop(self.zilliz._text_field, None)
|
||
|
doc.metadata.pop(self.zilliz._vector_field, None)
|
||
|
|
||
|
ids = self.zilliz.add_documents(docs)
|
||
|
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
|
||
|
return doc_infos
|
||
|
|
||
|
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||
|
if self.zilliz.col:
|
||
|
filepath = kb_file.filepath.replace('\\', '\\\\')
|
||
|
delete_list = [item.get("pk") for item in
|
||
|
self.zilliz.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
|
||
|
self.zilliz.col.delete(expr=f'pk in {delete_list}')
|
||
|
|
||
|
def do_clear_vs(self):
|
||
|
if self.zilliz.col:
|
||
|
self.do_drop_kb()
|
||
|
self.do_init()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
from server.db.base import Base, engine
|
||
|
|
||
|
Base.metadata.create_all(bind=engine)
|
||
|
zillizService = ZillizKBService("test")
|
||
|
|