ai/server/knowledge_base/kb_service/milvus_kb_service.py

132 lines
4.8 KiB
Python
Raw Normal View History

2023-12-14 14:26:13 +08:00
from typing import List, Dict, Optional
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores import Milvus
from pymilvus import connections
from configs import kbs_config
from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter, \
score_threshold_process
from server.knowledge_base.utils import KnowledgeFile
class MilvusKBService(KBService):
milvus: Milvus
@staticmethod
def get_collection(milvus_name):
from pymilvus import Collection
return Collection(milvus_name)
# def save_vector_store(self):
# if self.milvus.col:
# self.milvus.col.flush()
def get_doc_by_id(self, id: str) -> Optional[Document]:
if self.milvus.col:
data_list = self.milvus.col.query(expr=f'pk == {id}', output_fields=["*"])
if len(data_list) > 0:
data = data_list[0]
text = data.pop("text")
return Document(page_content=text, metadata=data)
@staticmethod
def search(milvus_name, content, limit=3):
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}
print(content)
c = MilvusKBService.get_collection(milvus_name)
r = c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
return r
def search_all(self, query, limit=3):
connections.connect("default", host="localhost", port="19530")
embedding_function = EmbeddingsFunAdapter(self._load_embeddings())
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}
content = [embedding_function.embed_query(query)]
c = MilvusKBService.get_collection(self.kb_name)
r = c.search(content, "vector", search_params, limit=limit, output_fields=["*"])
return r
def do_delete_one_doc(self, pk):
if self.milvus.col:
self.milvus.col.delete(expr=f'pk in [{pk}]')
print("delete success")
def do_create_kb(self):
pass
def vs_type(self) -> str:
return SupportedVSType.MILVUS
def _load_milvus(self, embeddings: Embeddings = None):
if embeddings is None:
self.embeddings = self._load_embeddings()
embeddings = self.embeddings
self.milvus = Milvus(embedding_function=EmbeddingsFunAdapter(embeddings),
collection_name=self.kb_name, connection_args=kbs_config.get("milvus"))
def do_init(self):
self._load_milvus()
def do_drop_kb(self):
if self.milvus.col:
self.milvus.col.release()
self.milvus.col.drop()
def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings):
self._load_milvus(embeddings=EmbeddingsFunAdapter(embeddings))
# similarity_search_with_score使用带分数的进行搜索
return score_threshold_process(score_threshold, top_k, self.milvus.similarity_search_with_score(query, top_k))
def do_search_all(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings):
r = self.search_all(query, top_k)
return r
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
# TODO: workaround for bug #10492 in langchain
for doc in docs:
for k, v in doc.metadata.items():
doc.metadata[k] = str(v)
for field in self.milvus.fields:
doc.metadata.setdefault(field, "")
doc.metadata.pop(self.milvus._text_field, None)
doc.metadata.pop(self.milvus._vector_field, None)
ids = self.milvus.add_documents(docs)
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
return doc_infos
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
if self.milvus.col:
filepath = kb_file.filepath.replace('\\', '\\\\')
delete_list = [item.get("pk") for item in
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
self.milvus.col.delete(expr=f'pk in {delete_list}')
def do_clear_vs(self):
if self.milvus.col:
self.do_drop_kb()
self.do_init()
if __name__ == '__main__':
# 测试建表使用
from server.db.base import Base, engine
Base.metadata.create_all(bind=engine)
milvusService = MilvusKBService("test")
# milvusService.add_doc(KnowledgeFile("README.md", "test"))
print(milvusService.get_doc_by_id("445466355570849011"))
# milvusService.delete_doc(KnowledgeFile("README.md", "test"))
# milvusService.do_drop_kb()