143 lines
4.9 KiB
Python
143 lines
4.9 KiB
Python
|
from __future__ import annotations
|
|||
|
from uuid import UUID
|
|||
|
from langchain.callbacks import AsyncIteratorCallbackHandler
|
|||
|
import json
|
|||
|
import asyncio
|
|||
|
from typing import Any, Dict, List, Optional
|
|||
|
|
|||
|
from langchain.schema import AgentFinish, AgentAction
|
|||
|
from langchain.schema.output import LLMResult
|
|||
|
|
|||
|
|
|||
|
def dumps(obj: Dict) -> str:
|
|||
|
return json.dumps(obj, ensure_ascii=False)
|
|||
|
|
|||
|
|
|||
|
class Status:
|
|||
|
start: int = 1
|
|||
|
running: int = 2
|
|||
|
complete: int = 3
|
|||
|
agent_action: int = 4
|
|||
|
agent_finish: int = 5
|
|||
|
error: int = 6
|
|||
|
tool_finish: int = 7
|
|||
|
|
|||
|
|
|||
|
class CustomAsyncIteratorCallbackHandler(AsyncIteratorCallbackHandler):
|
|||
|
def __init__(self):
|
|||
|
super().__init__()
|
|||
|
self.queue = asyncio.Queue()
|
|||
|
self.done = asyncio.Event()
|
|||
|
self.cur_tool = {}
|
|||
|
self.out = True
|
|||
|
|
|||
|
async def on_tool_start(self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID,
|
|||
|
parent_run_id: UUID | None = None, tags: List[str] | None = None,
|
|||
|
metadata: Dict[str, Any] | None = None, **kwargs: Any) -> None:
|
|||
|
|
|||
|
# 对于截断不能自理的大模型,我来帮他截断
|
|||
|
stop_words = ["Observation:", "Thought","\"","(", "\n","\t"]
|
|||
|
for stop_word in stop_words:
|
|||
|
index = input_str.find(stop_word)
|
|||
|
if index != -1:
|
|||
|
input_str = input_str[:index]
|
|||
|
break
|
|||
|
|
|||
|
self.cur_tool = {
|
|||
|
"tool_name": serialized["name"],
|
|||
|
"input_str": input_str,
|
|||
|
"output_str": "",
|
|||
|
"status": Status.agent_action,
|
|||
|
"run_id": run_id.hex,
|
|||
|
"llm_token": "",
|
|||
|
"final_answer": "",
|
|||
|
"error": "",
|
|||
|
}
|
|||
|
# print("\nInput Str:",self.cur_tool["input_str"])
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_tool_end(self, output: str, *, run_id: UUID, parent_run_id: UUID | None = None,
|
|||
|
tags: List[str] | None = None, **kwargs: Any) -> None:
|
|||
|
self.out = True ## 重置输出
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.tool_finish,
|
|||
|
output_str=output.replace("Answer:", ""),
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_tool_error(self, error: Exception | KeyboardInterrupt, *, run_id: UUID,
|
|||
|
parent_run_id: UUID | None = None, tags: List[str] | None = None, **kwargs: Any) -> None:
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.error,
|
|||
|
error=str(error),
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
|||
|
if "Action" in token: ## 减少重复输出
|
|||
|
before_action = token.split("Action")[0]
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.running,
|
|||
|
llm_token=before_action + "\n",
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
self.out = False
|
|||
|
|
|||
|
if token and self.out:
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.running,
|
|||
|
llm_token=token,
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> None:
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.start,
|
|||
|
llm_token="",
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
async def on_chat_model_start(
|
|||
|
self,
|
|||
|
serialized: Dict[str, Any],
|
|||
|
messages: List[List],
|
|||
|
*,
|
|||
|
run_id: UUID,
|
|||
|
parent_run_id: Optional[UUID] = None,
|
|||
|
tags: Optional[List[str]] = None,
|
|||
|
metadata: Optional[Dict[str, Any]] = None,
|
|||
|
**kwargs: Any,
|
|||
|
) -> None:
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.start,
|
|||
|
llm_token="",
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.complete,
|
|||
|
llm_token="\n",
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_llm_error(self, error: Exception | KeyboardInterrupt, **kwargs: Any) -> None:
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.error,
|
|||
|
error=str(error),
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
|
|||
|
async def on_agent_finish(
|
|||
|
self, finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None,
|
|||
|
tags: Optional[List[str]] = None,
|
|||
|
**kwargs: Any,
|
|||
|
) -> None:
|
|||
|
# 返回最终答案
|
|||
|
self.cur_tool.update(
|
|||
|
status=Status.agent_finish,
|
|||
|
final_answer=finish.return_values["output"],
|
|||
|
)
|
|||
|
self.queue.put_nowait(dumps(self.cur_tool))
|
|||
|
self.cur_tool = {}
|