ai/server/model_workers/base.py

88 lines
2.7 KiB
Python
Raw Permalink Normal View History

2023-12-14 14:26:13 +08:00
from configs.basic_config import LOG_PATH
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.base_model_worker import BaseModelWorker
import uuid
import json
import sys
from pydantic import BaseModel
import fastchat
import asyncio
from typing import Dict, List
# 恢复被fastchat覆盖的标准输出
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
class ApiModelOutMsg(BaseModel):
error_code: int = 0
text: str
class ApiModelWorker(BaseModelWorker):
BASE_URL: str
SUPPORT_MODELS: List
def __init__(
self,
model_names: List[str],
controller_addr: str,
worker_addr: str,
context_len: int = 2048,
**kwargs,
):
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
kwargs.setdefault("model_path", "")
kwargs.setdefault("limit_worker_concurrency", 5)
super().__init__(model_names=model_names,
controller_addr=controller_addr,
worker_addr=worker_addr,
**kwargs)
self.context_len = context_len
self.semaphore = asyncio.Semaphore(self.limit_worker_concurrency)
self.init_heart_beat()
def count_token(self, params):
# TODO需要完善
# print("count token")
prompt = params["prompt"]
return {"count": len(str(prompt)), "error_code": 0}
def generate_stream_gate(self, params):
self.call_ct += 1
def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())
def get_embeddings(self, params):
print("embedding")
# print(params)
# help methods
def get_config(self):
from server.utils import get_model_worker_config
return get_model_worker_config(self.model_names[0])
def prompt_to_messages(self, prompt: str) -> List[Dict]:
'''
将prompt字符串拆分成messages.
'''
result = []
user_role = self.conv.roles[0]
ai_role = self.conv.roles[1]
user_start = user_role + ":"
ai_start = ai_role + ":"
for msg in prompt.split(self.conv.sep)[1:-1]:
if msg.startswith(user_start):
if content := msg[len(user_start):].strip():
result.append({"role": user_role, "content": content})
elif msg.startswith(ai_start):
if content := msg[len(ai_start):].strip():
result.append({"role": ai_role, "content": content})
else:
raise RuntimeError(f"unknown role in msg: {msg}")
return result