ai/openai_api_request.py

63 lines
2.5 KiB
Python
Raw Permalink Normal View History

2023-12-14 14:26:13 +08:00
# 使用curl命令测试返回
# curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \
# -H "Content-Type: application/json" \
# -d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好给我讲一个故事大概100字\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}"
# 使用Python代码测返回
import requests
import json
base_url = "http://127.0.0.1:8000" # 本地部署的地址,或者使用你访问模型的API地址
def create_chat_completion(model, messages, use_stream=False):
data = {
"model": model, # 模型名称
"messages": messages, # 会话历史
"stream": use_stream, # 是否流式响应
"max_tokens": 100, # 最多生成字数
"temperature": 0.8, # 温度
"top_p": 0.8, # 采样概率
"kb_name": "ceshi",
"system_prompt": "",
"top_k": 2,
"score_threshold": 1.0
}
response = requests.post(f"{base_url}/v1/chat/completions", json=data, stream=use_stream)
if response.status_code == 200:
if use_stream:
# 处理流式响应
for line in response.iter_lines():
if line:
decoded_line = line.decode('utf-8')[6:]
try:
response_json = json.loads(decoded_line)
content = response_json.get("choices", [{}])[0].get("delta", {}).get("content", "")
print(content)
except:
print("Special Token:", decoded_line)
else:
# 处理非流式响应
decoded_line = response.json()
print(decoded_line)
content = decoded_line.get("choices", [{}])[0].get("message", "").get("content", "")
print(content)
else:
print("Error:", response.status_code)
return None
if __name__ == "__main__":
chat_messages = [
{
"role": "system",
"content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.",
},
{
"role": "user",
"content": "你好给我讲一个故事大概100字"
}
]
create_chat_completion("chatglm3-6b", chat_messages, use_stream=False)