(function (global, factory) {
  typeof exports === "object" && typeof module !== "undefined"
    ? (module.exports = factory(require("crypto")))
    : typeof define === "function" && define.amd
      ? define(["crypto"], factory)
      : ((global = typeof globalThis !== "undefined" ? globalThis : global || self),
      (global.CryptoJS = factory(global.require$$0)));
})(this, function (require$$0) {
  "use strict";

  function _interopDefaultLegacy(e) {
    return e && typeof e === "object" && "default" in e ? e : { default: e };
  }

  var require$$0__default = /*#__PURE__*/ _interopDefaultLegacy(require$$0);

  var commonjsGlobal =
    typeof globalThis !== "undefined"
      ? globalThis
      : typeof window !== "undefined"
        ? window
        : typeof global !== "undefined"
          ? global
          : typeof self !== "undefined"
            ? self
            : {};

  function createCommonjsModule(fn, basedir, module) {
    return (
      (module = {
        path: basedir,
        exports: {},
        require: function (path, base) {
          return commonjsRequire(path, base === undefined || base === null ? module.path : base);
        },
      }),
      fn(module, module.exports),
      module.exports
    );
  }

  function commonjsRequire() {
    throw new Error("Dynamic requires are not currently supported by @rollup/plugin-commonjs");
  }

  var core = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory();
      }
    })(commonjsGlobal, function () {
      /*globals window, global, require*/ /**
       * CryptoJS core components.
       */ var CryptoJS =
        CryptoJS ||
        (function (Math1, undefined1) {
          var crypto;
          // Native crypto from window (Browser)
          if (typeof window !== "undefined" && window.crypto) {
            crypto = window.crypto;
          }
          // Native crypto in web worker (Browser)
          if (typeof self !== "undefined" && self.crypto) {
            crypto = self.crypto;
          }
          // Native crypto from worker
          if (typeof globalThis !== "undefined" && globalThis.crypto) {
            crypto = globalThis.crypto;
          }
          // Native (experimental IE 11) crypto from window (Browser)
          if (!crypto && typeof window !== "undefined" && window.msCrypto) {
            crypto = window.msCrypto;
          }
          // Native crypto from global (NodeJS)
          if (!crypto && typeof commonjsGlobal !== "undefined" && commonjsGlobal.crypto) {
            crypto = commonjsGlobal.crypto;
          }
          // Native crypto import via require (NodeJS)
          if (!crypto && typeof commonjsRequire === "function") {
            try {
              crypto = require$$0__default["default"];
            } catch (err) {}
          }
          /*
           * Cryptographically secure pseudorandom number generator
           *
           * As Math.random() is cryptographically not safe to use
           */ var cryptoSecureRandomInt = function cryptoSecureRandomInt() {
            if (crypto) {
              // Use getRandomValues method (Browser)
              if (typeof crypto.getRandomValues === "function") {
                try {
                  return crypto.getRandomValues(new Uint32Array(1))[0];
                } catch (err) {}
              }
              // Use randomBytes method (NodeJS)
              if (typeof crypto.randomBytes === "function") {
                try {
                  return crypto.randomBytes(4).readInt32LE();
                } catch (err) {}
              }
            }
            throw new Error("Native crypto module could not be used to get secure random number.");
          };
          /*
		     * Local polyfill of Object.create

		     */ var create =
            Object.create ||
            (function () {
              var F = function F() {};
              return function (obj) {
                var subtype;
                F.prototype = obj;
                subtype = new F();
                F.prototype = null;
                return subtype;
              };
            })();
          /**
           * CryptoJS namespace.
           */ var C = {};
          /**
           * Library namespace.
           */ var C_lib = (C.lib = {});
          /**
           * Base object for prototypal inheritance.
           */ var Base = (C_lib.Base = (function () {
            return {
              /**
               * Creates a new object that inherits from this object.
               *
               * @param {Object} overrides Properties to copy into the new object.
               *
               * @return {Object} The new object.
               *
               * @static
               *
               * @example
               *
               *     var MyType = CryptoJS.lib.Base.extend({
               *         field: 'value',
               *
               *         method: function () {
               *         }
               *     });
               */ extend: function extend(overrides) {
                // Spawn
                var subtype = create(this);
                // Augment
                if (overrides) {
                  subtype.mixIn(overrides);
                }
                // Create default initializer
                if (!subtype.hasOwnProperty("init") || this.init === subtype.init) {
                  subtype.init = function () {
                    subtype.$super.init.apply(this, arguments);
                  };
                }
                // Initializer's prototype is the subtype object
                subtype.init.prototype = subtype;
                // Reference supertype
                subtype.$super = this;
                return subtype;
              },
              /**
               * Extends this object and runs the init method.
               * Arguments to create() will be passed to init().
               *
               * @return {Object} The new object.
               *
               * @static
               *
               * @example
               *
               *     var instance = MyType.create();
               */ create: function create() {
                var instance = this.extend();
                instance.init.apply(instance, arguments);
                return instance;
              },
              /**
               * Initializes a newly created object.
               * Override this method to add some logic when your objects are created.
               *
               * @example
               *
               *     var MyType = CryptoJS.lib.Base.extend({
               *         init: function () {
               *             // ...
               *         }
               *     });
               */ init: function init() {},
              /**
               * Copies properties into this object.
               *
               * @param {Object} properties The properties to mix in.
               *
               * @example
               *
               *     MyType.mixIn({
               *         field: 'value'
               *     });
               */ mixIn: function mixIn(properties) {
                for (var propertyName in properties) {
                  if (properties.hasOwnProperty(propertyName)) {
                    this[propertyName] = properties[propertyName];
                  }
                }
                // IE won't copy toString using the loop above
                if (properties.hasOwnProperty("toString")) {
                  this.toString = properties.toString;
                }
              },
              /**
               * Creates a copy of this object.
               *
               * @return {Object} The clone.
               *
               * @example
               *
               *     var clone = instance.clone();
               */ clone: function clone() {
                return this.init.prototype.extend(this);
              },
            };
          })());
          /**
           * An array of 32-bit words.
           *
           * @property {Array} words The array of 32-bit words.
           * @property {number} sigBytes The number of significant bytes in this word array.
           */ var WordArray = (C_lib.WordArray = Base.extend({
            /**
             * Initializes a newly created word array.
             *
             * @param {Array} words (Optional) An array of 32-bit words.
             * @param {number} sigBytes (Optional) The number of significant bytes in the words.
             *
             * @example
             *
             *     var wordArray = CryptoJS.lib.WordArray.create();
             *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
             *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
             */ init: function init(words, sigBytes) {
              words = this.words = words || [];
              if (sigBytes != undefined1) {
                this.sigBytes = sigBytes;
              } else {
                this.sigBytes = words.length * 4;
              }
            },
            /**
             * Converts this word array to a string.
             *
             * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
             *
             * @return {string} The stringified word array.
             *
             * @example
             *
             *     var string = wordArray + '';
             *     var string = wordArray.toString();
             *     var string = wordArray.toString(CryptoJS.enc.Utf8);
             */ toString: function toString(encoder) {
              return (encoder || Hex).stringify(this);
            },
            /**
             * Concatenates a word array to this word array.
             *
             * @param {WordArray} wordArray The word array to append.
             *
             * @return {WordArray} This word array.
             *
             * @example
             *
             *     wordArray1.concat(wordArray2);
             */ concat: function concat(wordArray) {
              // Shortcuts
              var thisWords = this.words;
              var thatWords = wordArray.words;
              var thisSigBytes = this.sigBytes;
              var thatSigBytes = wordArray.sigBytes;
              // Clamp excess bits
              this.clamp();
              // Concat
              if (thisSigBytes % 4) {
                // Copy one byte at a time
                for (var i = 0; i < thatSigBytes; i++) {
                  var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                  thisWords[(thisSigBytes + i) >>> 2] |=
                    thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
                }
              } else {
                // Copy one word at a time
                for (var j = 0; j < thatSigBytes; j += 4) {
                  thisWords[(thisSigBytes + j) >>> 2] = thatWords[j >>> 2];
                }
              }
              this.sigBytes += thatSigBytes;
              // Chainable
              return this;
            },
            /**
             * Removes insignificant bits.
             *
             * @example
             *
             *     wordArray.clamp();
             */ clamp: function clamp() {
              // Shortcuts
              var words = this.words;
              var sigBytes = this.sigBytes;
              // Clamp
              words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
              words.length = Math1.ceil(sigBytes / 4);
            },
            /**
             * Creates a copy of this word array.
             *
             * @return {WordArray} The clone.
             *
             * @example
             *
             *     var clone = wordArray.clone();
             */ clone: function clone() {
              var clone = Base.clone.call(this);
              clone.words = this.words.slice(0);
              return clone;
            },
            /**
             * Creates a word array filled with random bytes.
             *
             * @param {number} nBytes The number of random bytes to generate.
             *
             * @return {WordArray} The random word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.lib.WordArray.random(16);
             */ random: function random(nBytes) {
              var words = [];
              for (var i = 0; i < nBytes; i += 4) {
                words.push(cryptoSecureRandomInt());
              }
              return new WordArray.init(words, nBytes);
            },
          }));
          /**
           * Encoder namespace.
           */ var C_enc = (C.enc = {});
          /**
           * Hex encoding strategy.
           */ var Hex = (C_enc.Hex = {
            /**
             * Converts a word array to a hex string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The hex string.
             *
             * @static
             *
             * @example
             *
             *     var hexString = CryptoJS.enc.Hex.stringify(wordArray);
             */ stringify: function stringify(wordArray) {
              // Shortcuts
              var words = wordArray.words;
              var sigBytes = wordArray.sigBytes;
              // Convert
              var hexChars = [];
              for (var i = 0; i < sigBytes; i++) {
                var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                hexChars.push((bite >>> 4).toString(16));
                hexChars.push((bite & 0x0f).toString(16));
              }
              return hexChars.join("");
            },
            /**
             * Converts a hex string to a word array.
             *
             * @param {string} hexStr The hex string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Hex.parse(hexString);
             */ parse: function parse(hexStr) {
              // Shortcut
              var hexStrLength = hexStr.length;
              // Convert
              var words = [];
              for (var i = 0; i < hexStrLength; i += 2) {
                words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
              }
              return new WordArray.init(words, hexStrLength / 2);
            },
          });
          /**
           * Latin1 encoding strategy.
           */ var Latin1 = (C_enc.Latin1 = {
            /**
             * Converts a word array to a Latin1 string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The Latin1 string.
             *
             * @static
             *
             * @example
             *
             *     var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
             */ stringify: function stringify(wordArray) {
              // Shortcuts
              var words = wordArray.words;
              var sigBytes = wordArray.sigBytes;
              // Convert
              var latin1Chars = [];
              for (var i = 0; i < sigBytes; i++) {
                var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                latin1Chars.push(String.fromCharCode(bite));
              }
              return latin1Chars.join("");
            },
            /**
             * Converts a Latin1 string to a word array.
             *
             * @param {string} latin1Str The Latin1 string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
             */ parse: function parse(latin1Str) {
              // Shortcut
              var latin1StrLength = latin1Str.length;
              // Convert
              var words = [];
              for (var i = 0; i < latin1StrLength; i++) {
                words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
              }
              return new WordArray.init(words, latin1StrLength);
            },
          });
          /**
           * UTF-8 encoding strategy.
           */ var Utf8 = (C_enc.Utf8 = {
            /**
             * Converts a word array to a UTF-8 string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The UTF-8 string.
             *
             * @static
             *
             * @example
             *
             *     var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
             */ stringify: function stringify(wordArray) {
              try {
                return decodeURIComponent(escape(Latin1.stringify(wordArray)));
              } catch (e) {
                throw new Error("Malformed UTF-8 data");
              }
            },
            /**
             * Converts a UTF-8 string to a word array.
             *
             * @param {string} utf8Str The UTF-8 string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
             */ parse: function parse(utf8Str) {
              return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
            },
          });
          /**
           * Abstract buffered block algorithm template.
           *
           * The property blockSize must be implemented in a concrete subtype.
           *
           * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
           */ var BufferedBlockAlgorithm = (C_lib.BufferedBlockAlgorithm = Base.extend({
            /**
             * Resets this block algorithm's data buffer to its initial state.
             *
             * @example
             *
             *     bufferedBlockAlgorithm.reset();
             */ reset: function reset() {
              // Initial values
              this._data = new WordArray.init();
              this._nDataBytes = 0;
            },
            /**
             * Adds new data to this block algorithm's buffer.
             *
             * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
             *
             * @example
             *
             *     bufferedBlockAlgorithm._append('data');
             *     bufferedBlockAlgorithm._append(wordArray);
             */ _append: function _append(data) {
              // Convert string to WordArray, else assume WordArray already
              if (typeof data == "string") {
                data = Utf8.parse(data);
              }
              // Append
              this._data.concat(data);
              this._nDataBytes += data.sigBytes;
            },
            /**
             * Processes available data blocks.
             *
             * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
             *
             * @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
             *
             * @return {WordArray} The processed data.
             *
             * @example
             *
             *     var processedData = bufferedBlockAlgorithm._process();
             *     var processedData = bufferedBlockAlgorithm._process(!!'flush');
             */ _process: function _process(doFlush) {
              var processedWords;
              // Shortcuts
              var data = this._data;
              var dataWords = data.words;
              var dataSigBytes = data.sigBytes;
              var blockSize = this.blockSize;
              var blockSizeBytes = blockSize * 4;
              // Count blocks ready
              var nBlocksReady = dataSigBytes / blockSizeBytes;
              if (doFlush) {
                // Round up to include partial blocks
                nBlocksReady = Math1.ceil(nBlocksReady);
              } else {
                // Round down to include only full blocks,
                // less the number of blocks that must remain in the buffer
                nBlocksReady = Math1.max((nBlocksReady | 0) - this._minBufferSize, 0);
              }
              // Count words ready
              var nWordsReady = nBlocksReady * blockSize;
              // Count bytes ready
              var nBytesReady = Math1.min(nWordsReady * 4, dataSigBytes);
              // Process blocks
              if (nWordsReady) {
                for (var offset = 0; offset < nWordsReady; offset += blockSize) {
                  // Perform concrete-algorithm logic
                  this._doProcessBlock(dataWords, offset);
                }
                // Remove processed words
                processedWords = dataWords.splice(0, nWordsReady);
                data.sigBytes -= nBytesReady;
              }
              // Return processed words
              return new WordArray.init(processedWords, nBytesReady);
            },
            /**
             * Creates a copy of this object.
             *
             * @return {Object} The clone.
             *
             * @example
             *
             *     var clone = bufferedBlockAlgorithm.clone();
             */ clone: function clone() {
              var clone = Base.clone.call(this);
              clone._data = this._data.clone();
              return clone;
            },
            _minBufferSize: 0,
          }));
          /**
           * Abstract hasher template.
           *
           * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
           */ C_lib.Hasher = BufferedBlockAlgorithm.extend({
            /**
             * Configuration options.
             */ cfg: Base.extend(),
            /**
             * Initializes a newly created hasher.
             *
             * @param {Object} cfg (Optional) The configuration options to use for this hash computation.
             *
             * @example
             *
             *     var hasher = CryptoJS.algo.SHA256.create();
             */ init: function init(cfg) {
              // Apply config defaults
              this.cfg = this.cfg.extend(cfg);
              // Set initial values
              this.reset();
            },
            /**
             * Resets this hasher to its initial state.
             *
             * @example
             *
             *     hasher.reset();
             */ reset: function reset() {
              // Reset data buffer
              BufferedBlockAlgorithm.reset.call(this);
              // Perform concrete-hasher logic
              this._doReset();
            },
            /**
             * Updates this hasher with a message.
             *
             * @param {WordArray|string} messageUpdate The message to append.
             *
             * @return {Hasher} This hasher.
             *
             * @example
             *
             *     hasher.update('message');
             *     hasher.update(wordArray);
             */ update: function update(messageUpdate) {
              // Append
              this._append(messageUpdate);
              // Update the hash
              this._process();
              // Chainable
              return this;
            },
            /**
             * Finalizes the hash computation.
             * Note that the finalize operation is effectively a destructive, read-once operation.
             *
             * @param {WordArray|string} messageUpdate (Optional) A final message update.
             *
             * @return {WordArray} The hash.
             *
             * @example
             *
             *     var hash = hasher.finalize();
             *     var hash = hasher.finalize('message');
             *     var hash = hasher.finalize(wordArray);
             */ finalize: function finalize(messageUpdate) {
              // Final message update
              if (messageUpdate) {
                this._append(messageUpdate);
              }
              // Perform concrete-hasher logic
              var hash = this._doFinalize();
              return hash;
            },
            blockSize: 512 / 32,
            /**
             * Creates a shortcut function to a hasher's object interface.
             *
             * @param {Hasher} hasher The hasher to create a helper for.
             *
             * @return {Function} The shortcut function.
             *
             * @static
             *
             * @example
             *
             *     var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
             */ _createHelper: function _createHelper(hasher) {
              return function (message, cfg) {
                return new hasher.init(cfg).finalize(message);
              };
            },
            /**
             * Creates a shortcut function to the HMAC's object interface.
             *
             * @param {Hasher} hasher The hasher to use in this HMAC helper.
             *
             * @return {Function} The shortcut function.
             *
             * @static
             *
             * @example
             *
             *     var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
             */ _createHmacHelper: function _createHmacHelper(hasher) {
              return function (message, key) {
                return new C_algo.HMAC.init(hasher, key).finalize(message);
              };
            },
          });
          /**
           * Algorithm namespace.
           */ var C_algo = (C.algo = {});
          return C;
        })(Math);
      return CryptoJS;
    });
  });

  var x64Core = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function (undefined1) {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Base = C_lib.Base;
        var X32WordArray = C_lib.WordArray;
        /**
         * x64 namespace.
         */ var C_x64 = (C.x64 = {});
        /**
         * A 64-bit word.
         */ C_x64.Word = Base.extend({
          /**
           * Initializes a newly created 64-bit word.
           *
           * @param {number} high The high 32 bits.
           * @param {number} low The low 32 bits.
           *
           * @example
           *
           *     var x64Word = CryptoJS.x64.Word.create(0x00010203, 0x04050607);
           */ init: function init(high, low) {
            this.high = high;
            this.low = low;
          },
        });
        /**
         * An array of 64-bit words.
         *
         * @property {Array} words The array of CryptoJS.x64.Word objects.
         * @property {number} sigBytes The number of significant bytes in this word array.
         */ C_x64.WordArray = Base.extend({
          /**
           * Initializes a newly created word array.
           *
           * @param {Array} words (Optional) An array of CryptoJS.x64.Word objects.
           * @param {number} sigBytes (Optional) The number of significant bytes in the words.
           *
           * @example
           *
           *     var wordArray = CryptoJS.x64.WordArray.create();
           *
           *     var wordArray = CryptoJS.x64.WordArray.create([
           *         CryptoJS.x64.Word.create(0x00010203, 0x04050607),
           *         CryptoJS.x64.Word.create(0x18191a1b, 0x1c1d1e1f)
           *     ]);
           *
           *     var wordArray = CryptoJS.x64.WordArray.create([
           *         CryptoJS.x64.Word.create(0x00010203, 0x04050607),
           *         CryptoJS.x64.Word.create(0x18191a1b, 0x1c1d1e1f)
           *     ], 10);
           */ init: function init(words, sigBytes) {
            words = this.words = words || [];
            if (sigBytes != undefined1) {
              this.sigBytes = sigBytes;
            } else {
              this.sigBytes = words.length * 8;
            }
          },
          /**
           * Converts this 64-bit word array to a 32-bit word array.
           *
           * @return {CryptoJS.lib.WordArray} This word array's data as a 32-bit word array.
           *
           * @example
           *
           *     var x32WordArray = x64WordArray.toX32();
           */ toX32: function toX32() {
            // Shortcuts
            var x64Words = this.words;
            var x64WordsLength = x64Words.length;
            // Convert
            var x32Words = [];
            for (var i = 0; i < x64WordsLength; i++) {
              var x64Word = x64Words[i];
              x32Words.push(x64Word.high);
              x32Words.push(x64Word.low);
            }
            return X32WordArray.create(x32Words, this.sigBytes);
          },
          /**
           * Creates a copy of this word array.
           *
           * @return {X64WordArray} The clone.
           *
           * @example
           *
           *     var clone = x64WordArray.clone();
           */ clone: function clone() {
            var clone = Base.clone.call(this);
            // Clone "words" array
            var words = (clone.words = this.words.slice(0));
            // Clone each X64Word object
            var wordsLength = words.length;
            for (var i = 0; i < wordsLength; i++) {
              words[i] = words[i].clone();
            }
            return clone;
          },
        });
      })();
      return CryptoJS;
    });
  });

  function _instanceof(left, right) {
    if (right != null && typeof Symbol !== "undefined" && right[Symbol.hasInstance]) {
      return !!right[Symbol.hasInstance](left);
    } else {
      return left instanceof right;
    }
  }
  var libTypedarrays = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Check if typed arrays are supported
        if (typeof ArrayBuffer != "function") {
          return;
        }
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        // Reference original init
        var superInit = WordArray.init;
        // Augment WordArray.init to handle typed arrays
        var subInit = (WordArray.init = function subInit(typedArray) {
          // Convert buffers to uint8
          if (_instanceof(typedArray, ArrayBuffer)) {
            typedArray = new Uint8Array(typedArray);
          }
          // Convert other array views to uint8
          if (
            _instanceof(typedArray, Int8Array) ||
            (typeof Uint8ClampedArray !== "undefined" &&
              _instanceof(typedArray, Uint8ClampedArray)) ||
            _instanceof(typedArray, Int16Array) ||
            _instanceof(typedArray, Uint16Array) ||
            _instanceof(typedArray, Int32Array) ||
            _instanceof(typedArray, Uint32Array) ||
            _instanceof(typedArray, Float32Array) ||
            _instanceof(typedArray, Float64Array)
          ) {
            typedArray = new Uint8Array(
              typedArray.buffer,
              typedArray.byteOffset,
              typedArray.byteLength
            );
          }
          // Handle Uint8Array
          if (_instanceof(typedArray, Uint8Array)) {
            // Shortcut
            var typedArrayByteLength = typedArray.byteLength;
            // Extract bytes
            var words = [];
            for (var i = 0; i < typedArrayByteLength; i++) {
              words[i >>> 2] |= typedArray[i] << (24 - (i % 4) * 8);
            }
            // Initialize this word array
            superInit.call(this, words, typedArrayByteLength);
          } else {
            // Else call normal init
            superInit.apply(this, arguments);
          }
        });
        subInit.prototype = WordArray;
      })();
      return CryptoJS.lib.WordArray;
    });
  });

  var encUtf16 = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var swapEndian = function swapEndian(word) {
          return ((word << 8) & 0xff00ff00) | ((word >>> 8) & 0x00ff00ff);
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var C_enc = C.enc;
        /**
         * UTF-16 BE encoding strategy.
         */ C_enc.Utf16 = C_enc.Utf16BE = {
          /**
           * Converts a word array to a UTF-16 BE string.
           *
           * @param {WordArray} wordArray The word array.
           *
           * @return {string} The UTF-16 BE string.
           *
           * @static
           *
           * @example
           *
           *     var utf16String = CryptoJS.enc.Utf16.stringify(wordArray);
           */ stringify: function stringify(wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;
            // Convert
            var utf16Chars = [];
            for (var i = 0; i < sigBytes; i += 2) {
              var codePoint = (words[i >>> 2] >>> (16 - (i % 4) * 8)) & 0xffff;
              utf16Chars.push(String.fromCharCode(codePoint));
            }
            return utf16Chars.join("");
          },
          /**
           * Converts a UTF-16 BE string to a word array.
           *
           * @param {string} utf16Str The UTF-16 BE string.
           *
           * @return {WordArray} The word array.
           *
           * @static
           *
           * @example
           *
           *     var wordArray = CryptoJS.enc.Utf16.parse(utf16String);
           */ parse: function parse(utf16Str) {
            // Shortcut
            var utf16StrLength = utf16Str.length;
            // Convert
            var words = [];
            for (var i = 0; i < utf16StrLength; i++) {
              words[i >>> 1] |= utf16Str.charCodeAt(i) << (16 - (i % 2) * 16);
            }
            return WordArray.create(words, utf16StrLength * 2);
          },
        };
        /**
         * UTF-16 LE encoding strategy.
         */ C_enc.Utf16LE = {
          /**
           * Converts a word array to a UTF-16 LE string.
           *
           * @param {WordArray} wordArray The word array.
           *
           * @return {string} The UTF-16 LE string.
           *
           * @static
           *
           * @example
           *
           *     var utf16Str = CryptoJS.enc.Utf16LE.stringify(wordArray);
           */ stringify: function stringify(wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;
            // Convert
            var utf16Chars = [];
            for (var i = 0; i < sigBytes; i += 2) {
              var codePoint = swapEndian((words[i >>> 2] >>> (16 - (i % 4) * 8)) & 0xffff);
              utf16Chars.push(String.fromCharCode(codePoint));
            }
            return utf16Chars.join("");
          },
          /**
           * Converts a UTF-16 LE string to a word array.
           *
           * @param {string} utf16Str The UTF-16 LE string.
           *
           * @return {WordArray} The word array.
           *
           * @static
           *
           * @example
           *
           *     var wordArray = CryptoJS.enc.Utf16LE.parse(utf16Str);
           */ parse: function parse(utf16Str) {
            // Shortcut
            var utf16StrLength = utf16Str.length;
            // Convert
            var words = [];
            for (var i = 0; i < utf16StrLength; i++) {
              words[i >>> 1] |= swapEndian(utf16Str.charCodeAt(i) << (16 - (i % 2) * 16));
            }
            return WordArray.create(words, utf16StrLength * 2);
          },
        };
      })();
      return CryptoJS.enc.Utf16;
    });
  });

  var encBase64 = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var parseLoop = function parseLoop(base64Str, base64StrLength, reverseMap) {
          var words = [];
          var nBytes = 0;
          for (var i = 0; i < base64StrLength; i++) {
            if (i % 4) {
              var bits1 = reverseMap[base64Str.charCodeAt(i - 1)] << ((i % 4) * 2);
              var bits2 = reverseMap[base64Str.charCodeAt(i)] >>> (6 - (i % 4) * 2);
              var bitsCombined = bits1 | bits2;
              words[nBytes >>> 2] |= bitsCombined << (24 - (nBytes % 4) * 8);
              nBytes++;
            }
          }
          return WordArray.create(words, nBytes);
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var C_enc = C.enc;
        /**
         * Base64 encoding strategy.
         */ C_enc.Base64 = {
          /**
           * Converts a word array to a Base64 string.
           *
           * @param {WordArray} wordArray The word array.
           *
           * @return {string} The Base64 string.
           *
           * @static
           *
           * @example
           *
           *     var base64String = CryptoJS.enc.Base64.stringify(wordArray);
           */ stringify: function stringify(wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;
            var map = this._map;
            // Clamp excess bits
            wordArray.clamp();
            // Convert
            var base64Chars = [];
            for (var i = 0; i < sigBytes; i += 3) {
              var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
              var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
              var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
              var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
              for (var j = 0; j < 4 && i + j * 0.75 < sigBytes; j++) {
                base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
              }
            }
            // Add padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
              while (base64Chars.length % 4) {
                base64Chars.push(paddingChar);
              }
            }
            return base64Chars.join("");
          },
          /**
           * Converts a Base64 string to a word array.
           *
           * @param {string} base64Str The Base64 string.
           *
           * @return {WordArray} The word array.
           *
           * @static
           *
           * @example
           *
           *     var wordArray = CryptoJS.enc.Base64.parse(base64String);
           */ parse: function parse(base64Str) {
            // Shortcuts
            var base64StrLength = base64Str.length;
            var map = this._map;
            var reverseMap = this._reverseMap;
            if (!reverseMap) {
              reverseMap = this._reverseMap = [];
              for (var j = 0; j < map.length; j++) {
                reverseMap[map.charCodeAt(j)] = j;
              }
            }
            // Ignore padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
              var paddingIndex = base64Str.indexOf(paddingChar);
              if (paddingIndex !== -1) {
                base64StrLength = paddingIndex;
              }
            }
            // Convert
            return parseLoop(base64Str, base64StrLength, reverseMap);
          },
          _map: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",
        };
      })();
      return CryptoJS.enc.Base64;
    });
  });

  var encBase64url = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var parseLoop = function parseLoop(base64Str, base64StrLength, reverseMap) {
          var words = [];
          var nBytes = 0;
          for (var i = 0; i < base64StrLength; i++) {
            if (i % 4) {
              var bits1 = reverseMap[base64Str.charCodeAt(i - 1)] << ((i % 4) * 2);
              var bits2 = reverseMap[base64Str.charCodeAt(i)] >>> (6 - (i % 4) * 2);
              var bitsCombined = bits1 | bits2;
              words[nBytes >>> 2] |= bitsCombined << (24 - (nBytes % 4) * 8);
              nBytes++;
            }
          }
          return WordArray.create(words, nBytes);
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var C_enc = C.enc;
        /**
         * Base64url encoding strategy.
         */ C_enc.Base64url = {
          /**
           * Converts a word array to a Base64url string.
           *
           * @param {WordArray} wordArray The word array.
           *
           * @param {boolean} urlSafe Whether to use url safe
           *
           * @return {string} The Base64url string.
           *
           * @static
           *
           * @example
           *
           *     var base64String = CryptoJS.enc.Base64url.stringify(wordArray);
           */ stringify: function stringify(wordArray) {
            var urlSafe = arguments.length > 1 && arguments[1] !== void 0 ? arguments[1] : true;
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;
            var map = urlSafe ? this._safe_map : this._map;
            // Clamp excess bits
            wordArray.clamp();
            // Convert
            var base64Chars = [];
            for (var i = 0; i < sigBytes; i += 3) {
              var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
              var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
              var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
              var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
              for (var j = 0; j < 4 && i + j * 0.75 < sigBytes; j++) {
                base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
              }
            }
            // Add padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
              while (base64Chars.length % 4) {
                base64Chars.push(paddingChar);
              }
            }
            return base64Chars.join("");
          },
          /**
           * Converts a Base64url string to a word array.
           *
           * @param {string} base64Str The Base64url string.
           *
           * @param {boolean} urlSafe Whether to use url safe
           *
           * @return {WordArray} The word array.
           *
           * @static
           *
           * @example
           *
           *     var wordArray = CryptoJS.enc.Base64url.parse(base64String);
           */ parse: function parse(base64Str) {
            var urlSafe = arguments.length > 1 && arguments[1] !== void 0 ? arguments[1] : true;
            // Shortcuts
            var base64StrLength = base64Str.length;
            var map = urlSafe ? this._safe_map : this._map;
            var reverseMap = this._reverseMap;
            if (!reverseMap) {
              reverseMap = this._reverseMap = [];
              for (var j = 0; j < map.length; j++) {
                reverseMap[map.charCodeAt(j)] = j;
              }
            }
            // Ignore padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
              var paddingIndex = base64Str.indexOf(paddingChar);
              if (paddingIndex !== -1) {
                base64StrLength = paddingIndex;
              }
            }
            // Convert
            return parseLoop(base64Str, base64StrLength, reverseMap);
          },
          _map: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",
          _safe_map: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_",
        };
      })();
      return CryptoJS.enc.Base64url;
    });
  });

  var md5 = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function (Math1) {
        var FF = function FF(a, b, c, d, x, s, t) {
          var n = a + ((b & c) | (~b & d)) + x + t;
          return ((n << s) | (n >>> (32 - s))) + b;
        };
        var GG = function GG(a, b, c, d, x, s, t) {
          var n = a + ((b & d) | (c & ~d)) + x + t;
          return ((n << s) | (n >>> (32 - s))) + b;
        };
        var HH = function HH(a, b, c, d, x, s, t) {
          var n = a + (b ^ c ^ d) + x + t;
          return ((n << s) | (n >>> (32 - s))) + b;
        };
        var II = function II(a, b, c, d, x, s, t) {
          var n = a + (c ^ (b | ~d)) + x + t;
          return ((n << s) | (n >>> (32 - s))) + b;
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var Hasher = C_lib.Hasher;
        var C_algo = C.algo;
        // Constants table
        var T = [];
        // Compute constants
        (function () {
          for (var i = 0; i < 64; i++) {
            T[i] = (Math1.abs(Math1.sin(i + 1)) * 0x100000000) | 0;
          }
        })();
        /**
         * MD5 hash algorithm.
         */ var MD5 = (C_algo.MD5 = Hasher.extend({
          _doReset: function _doReset() {
            this._hash = new WordArray.init([0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476]);
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Swap endian
            for (var i = 0; i < 16; i++) {
              // Shortcuts
              var offset_i = offset + i;
              var M_offset_i = M[offset_i];
              M[offset_i] =
                (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
                (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00);
            }
            // Shortcuts
            var H = this._hash.words;
            var M_offset_0 = M[offset + 0];
            var M_offset_1 = M[offset + 1];
            var M_offset_2 = M[offset + 2];
            var M_offset_3 = M[offset + 3];
            var M_offset_4 = M[offset + 4];
            var M_offset_5 = M[offset + 5];
            var M_offset_6 = M[offset + 6];
            var M_offset_7 = M[offset + 7];
            var M_offset_8 = M[offset + 8];
            var M_offset_9 = M[offset + 9];
            var M_offset_10 = M[offset + 10];
            var M_offset_11 = M[offset + 11];
            var M_offset_12 = M[offset + 12];
            var M_offset_13 = M[offset + 13];
            var M_offset_14 = M[offset + 14];
            var M_offset_15 = M[offset + 15];
            // Working varialbes
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            // Computation
            a = FF(a, b, c, d, M_offset_0, 7, T[0]);
            d = FF(d, a, b, c, M_offset_1, 12, T[1]);
            c = FF(c, d, a, b, M_offset_2, 17, T[2]);
            b = FF(b, c, d, a, M_offset_3, 22, T[3]);
            a = FF(a, b, c, d, M_offset_4, 7, T[4]);
            d = FF(d, a, b, c, M_offset_5, 12, T[5]);
            c = FF(c, d, a, b, M_offset_6, 17, T[6]);
            b = FF(b, c, d, a, M_offset_7, 22, T[7]);
            a = FF(a, b, c, d, M_offset_8, 7, T[8]);
            d = FF(d, a, b, c, M_offset_9, 12, T[9]);
            c = FF(c, d, a, b, M_offset_10, 17, T[10]);
            b = FF(b, c, d, a, M_offset_11, 22, T[11]);
            a = FF(a, b, c, d, M_offset_12, 7, T[12]);
            d = FF(d, a, b, c, M_offset_13, 12, T[13]);
            c = FF(c, d, a, b, M_offset_14, 17, T[14]);
            b = FF(b, c, d, a, M_offset_15, 22, T[15]);
            a = GG(a, b, c, d, M_offset_1, 5, T[16]);
            d = GG(d, a, b, c, M_offset_6, 9, T[17]);
            c = GG(c, d, a, b, M_offset_11, 14, T[18]);
            b = GG(b, c, d, a, M_offset_0, 20, T[19]);
            a = GG(a, b, c, d, M_offset_5, 5, T[20]);
            d = GG(d, a, b, c, M_offset_10, 9, T[21]);
            c = GG(c, d, a, b, M_offset_15, 14, T[22]);
            b = GG(b, c, d, a, M_offset_4, 20, T[23]);
            a = GG(a, b, c, d, M_offset_9, 5, T[24]);
            d = GG(d, a, b, c, M_offset_14, 9, T[25]);
            c = GG(c, d, a, b, M_offset_3, 14, T[26]);
            b = GG(b, c, d, a, M_offset_8, 20, T[27]);
            a = GG(a, b, c, d, M_offset_13, 5, T[28]);
            d = GG(d, a, b, c, M_offset_2, 9, T[29]);
            c = GG(c, d, a, b, M_offset_7, 14, T[30]);
            b = GG(b, c, d, a, M_offset_12, 20, T[31]);
            a = HH(a, b, c, d, M_offset_5, 4, T[32]);
            d = HH(d, a, b, c, M_offset_8, 11, T[33]);
            c = HH(c, d, a, b, M_offset_11, 16, T[34]);
            b = HH(b, c, d, a, M_offset_14, 23, T[35]);
            a = HH(a, b, c, d, M_offset_1, 4, T[36]);
            d = HH(d, a, b, c, M_offset_4, 11, T[37]);
            c = HH(c, d, a, b, M_offset_7, 16, T[38]);
            b = HH(b, c, d, a, M_offset_10, 23, T[39]);
            a = HH(a, b, c, d, M_offset_13, 4, T[40]);
            d = HH(d, a, b, c, M_offset_0, 11, T[41]);
            c = HH(c, d, a, b, M_offset_3, 16, T[42]);
            b = HH(b, c, d, a, M_offset_6, 23, T[43]);
            a = HH(a, b, c, d, M_offset_9, 4, T[44]);
            d = HH(d, a, b, c, M_offset_12, 11, T[45]);
            c = HH(c, d, a, b, M_offset_15, 16, T[46]);
            b = HH(b, c, d, a, M_offset_2, 23, T[47]);
            a = II(a, b, c, d, M_offset_0, 6, T[48]);
            d = II(d, a, b, c, M_offset_7, 10, T[49]);
            c = II(c, d, a, b, M_offset_14, 15, T[50]);
            b = II(b, c, d, a, M_offset_5, 21, T[51]);
            a = II(a, b, c, d, M_offset_12, 6, T[52]);
            d = II(d, a, b, c, M_offset_3, 10, T[53]);
            c = II(c, d, a, b, M_offset_10, 15, T[54]);
            b = II(b, c, d, a, M_offset_1, 21, T[55]);
            a = II(a, b, c, d, M_offset_8, 6, T[56]);
            d = II(d, a, b, c, M_offset_15, 10, T[57]);
            c = II(c, d, a, b, M_offset_6, 15, T[58]);
            b = II(b, c, d, a, M_offset_13, 21, T[59]);
            a = II(a, b, c, d, M_offset_4, 6, T[60]);
            d = II(d, a, b, c, M_offset_11, 10, T[61]);
            c = II(c, d, a, b, M_offset_2, 15, T[62]);
            b = II(b, c, d, a, M_offset_9, 21, T[63]);
            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
          },
          _doFinalize: function _doFinalize() {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - (nBitsLeft % 32));
            var nBitsTotalH = Math1.floor(nBitsTotal / 0x100000000);
            var nBitsTotalL = nBitsTotal;
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] =
              (((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
              (((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] =
              (((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
              (((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00);
            data.sigBytes = (dataWords.length + 1) * 4;
            // Hash final blocks
            this._process();
            // Shortcuts
            var hash = this._hash;
            var H = hash.words;
            // Swap endian
            for (var i = 0; i < 4; i++) {
              // Shortcut
              var H_i = H[i];
              H[i] =
                (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
                (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
            }
            // Return final computed hash
            return hash;
          },
          clone: function clone() {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();
            return clone;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.MD5('message');
         *     var hash = CryptoJS.MD5(wordArray);
         */ C.MD5 = Hasher._createHelper(MD5);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacMD5(message, key);
         */ C.HmacMD5 = Hasher._createHmacHelper(MD5);
      })(Math);
      return CryptoJS.MD5;
    });
  });

  var sha1 = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var Hasher = C_lib.Hasher;
        var C_algo = C.algo;
        // Reusable object
        var W = [];
        /**
         * SHA-1 hash algorithm.
         */ var SHA1 = (C_algo.SHA1 = Hasher.extend({
          _doReset: function _doReset() {
            this._hash = new WordArray.init([
              0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
            ]);
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Shortcut
            var H = this._hash.words;
            // Working variables
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            var e = H[4];
            // Computation
            for (var i = 0; i < 80; i++) {
              if (i < 16) {
                W[i] = M[offset + i] | 0;
              } else {
                var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
                W[i] = (n << 1) | (n >>> 31);
              }
              var t = ((a << 5) | (a >>> 27)) + e + W[i];
              if (i < 20) {
                t += ((b & c) | (~b & d)) + 0x5a827999;
              } else if (i < 40) {
                t += (b ^ c ^ d) + 0x6ed9eba1;
              } else if (i < 60) {
                t += ((b & c) | (b & d) | (c & d)) - 0x70e44324;
              } /* if (i < 80) */ else {
                t += (b ^ c ^ d) - 0x359d3e2a;
              }
              e = d;
              d = c;
              c = (b << 30) | (b >>> 2);
              b = a;
              a = t;
            }
            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
            H[4] = (H[4] + e) | 0;
          },
          _doFinalize: function _doFinalize() {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - (nBitsLeft % 32));
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;
            // Hash final blocks
            this._process();
            // Return final computed hash
            return this._hash;
          },
          clone: function clone() {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();
            return clone;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.SHA1('message');
         *     var hash = CryptoJS.SHA1(wordArray);
         */ C.SHA1 = Hasher._createHelper(SHA1);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacSHA1(message, key);
         */ C.HmacSHA1 = Hasher._createHmacHelper(SHA1);
      })();
      return CryptoJS.SHA1;
    });
  });

  var sha256 = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function (Math1) {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var Hasher = C_lib.Hasher;
        var C_algo = C.algo;
        // Initialization and round constants tables
        var H = [];
        var K = [];
        // Compute constants
        (function () {
          var isPrime = function isPrime(n) {
            var sqrtN = Math1.sqrt(n);
            for (var factor = 2; factor <= sqrtN; factor++) {
              if (!(n % factor)) {
                return false;
              }
            }
            return true;
          };
          var getFractionalBits = function getFractionalBits(n) {
            return ((n - (n | 0)) * 0x100000000) | 0;
          };
          var n = 2;
          var nPrime = 0;
          while (nPrime < 64) {
            if (isPrime(n)) {
              if (nPrime < 8) {
                H[nPrime] = getFractionalBits(Math1.pow(n, 1 / 2));
              }
              K[nPrime] = getFractionalBits(Math1.pow(n, 1 / 3));
              nPrime++;
            }
            n++;
          }
        })();
        // Reusable object
        var W = [];
        /**
         * SHA-256 hash algorithm.
         */ var SHA256 = (C_algo.SHA256 = Hasher.extend({
          _doReset: function _doReset() {
            this._hash = new WordArray.init(H.slice(0));
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Shortcut
            var H = this._hash.words;
            // Working variables
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            var e = H[4];
            var f = H[5];
            var g = H[6];
            var h = H[7];
            // Computation
            for (var i = 0; i < 64; i++) {
              if (i < 16) {
                W[i] = M[offset + i] | 0;
              } else {
                var gamma0x = W[i - 15];
                var gamma0 =
                  ((gamma0x << 25) | (gamma0x >>> 7)) ^
                  ((gamma0x << 14) | (gamma0x >>> 18)) ^
                  (gamma0x >>> 3);
                var gamma1x = W[i - 2];
                var gamma1 =
                  ((gamma1x << 15) | (gamma1x >>> 17)) ^
                  ((gamma1x << 13) | (gamma1x >>> 19)) ^
                  (gamma1x >>> 10);
                W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
              }
              var ch = (e & f) ^ (~e & g);
              var maj = (a & b) ^ (a & c) ^ (b & c);
              var sigma0 =
                ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
              var sigma1 =
                ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25));
              var t1 = h + sigma1 + ch + K[i] + W[i];
              var t2 = sigma0 + maj;
              h = g;
              g = f;
              f = e;
              e = (d + t1) | 0;
              d = c;
              c = b;
              b = a;
              a = (t1 + t2) | 0;
            }
            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
            H[4] = (H[4] + e) | 0;
            H[5] = (H[5] + f) | 0;
            H[6] = (H[6] + g) | 0;
            H[7] = (H[7] + h) | 0;
          },
          _doFinalize: function _doFinalize() {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - (nBitsLeft % 32));
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math1.floor(nBitsTotal / 0x100000000);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;
            // Hash final blocks
            this._process();
            // Return final computed hash
            return this._hash;
          },
          clone: function clone() {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();
            return clone;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.SHA256('message');
         *     var hash = CryptoJS.SHA256(wordArray);
         */ C.SHA256 = Hasher._createHelper(SHA256);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacSHA256(message, key);
         */ C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
      })(Math);
      return CryptoJS.SHA256;
    });
  });

  var sha224 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, sha256);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var C_algo = C.algo;
        var SHA256 = C_algo.SHA256;
        /**
         * SHA-224 hash algorithm.
         */ var SHA224 = (C_algo.SHA224 = SHA256.extend({
          _doReset: function _doReset() {
            this._hash = new WordArray.init([
              0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7,
              0xbefa4fa4,
            ]);
          },
          _doFinalize: function _doFinalize() {
            var hash = SHA256._doFinalize.call(this);
            hash.sigBytes -= 4;
            return hash;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.SHA224('message');
         *     var hash = CryptoJS.SHA224(wordArray);
         */ C.SHA224 = SHA256._createHelper(SHA224);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacSHA224(message, key);
         */ C.HmacSHA224 = SHA256._createHmacHelper(SHA224);
      })();
      return CryptoJS.SHA224;
    });
  });

  var sha512 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, x64Core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var X64Word_create = function X64Word_create() {
          return X64Word.create.apply(X64Word, arguments);
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Hasher = C_lib.Hasher;
        var C_x64 = C.x64;
        var X64Word = C_x64.Word;
        var X64WordArray = C_x64.WordArray;
        var C_algo = C.algo;
        // Constants
        var K = [
          X64Word_create(0x428a2f98, 0xd728ae22),
          X64Word_create(0x71374491, 0x23ef65cd),
          X64Word_create(0xb5c0fbcf, 0xec4d3b2f),
          X64Word_create(0xe9b5dba5, 0x8189dbbc),
          X64Word_create(0x3956c25b, 0xf348b538),
          X64Word_create(0x59f111f1, 0xb605d019),
          X64Word_create(0x923f82a4, 0xaf194f9b),
          X64Word_create(0xab1c5ed5, 0xda6d8118),
          X64Word_create(0xd807aa98, 0xa3030242),
          X64Word_create(0x12835b01, 0x45706fbe),
          X64Word_create(0x243185be, 0x4ee4b28c),
          X64Word_create(0x550c7dc3, 0xd5ffb4e2),
          X64Word_create(0x72be5d74, 0xf27b896f),
          X64Word_create(0x80deb1fe, 0x3b1696b1),
          X64Word_create(0x9bdc06a7, 0x25c71235),
          X64Word_create(0xc19bf174, 0xcf692694),
          X64Word_create(0xe49b69c1, 0x9ef14ad2),
          X64Word_create(0xefbe4786, 0x384f25e3),
          X64Word_create(0x0fc19dc6, 0x8b8cd5b5),
          X64Word_create(0x240ca1cc, 0x77ac9c65),
          X64Word_create(0x2de92c6f, 0x592b0275),
          X64Word_create(0x4a7484aa, 0x6ea6e483),
          X64Word_create(0x5cb0a9dc, 0xbd41fbd4),
          X64Word_create(0x76f988da, 0x831153b5),
          X64Word_create(0x983e5152, 0xee66dfab),
          X64Word_create(0xa831c66d, 0x2db43210),
          X64Word_create(0xb00327c8, 0x98fb213f),
          X64Word_create(0xbf597fc7, 0xbeef0ee4),
          X64Word_create(0xc6e00bf3, 0x3da88fc2),
          X64Word_create(0xd5a79147, 0x930aa725),
          X64Word_create(0x06ca6351, 0xe003826f),
          X64Word_create(0x14292967, 0x0a0e6e70),
          X64Word_create(0x27b70a85, 0x46d22ffc),
          X64Word_create(0x2e1b2138, 0x5c26c926),
          X64Word_create(0x4d2c6dfc, 0x5ac42aed),
          X64Word_create(0x53380d13, 0x9d95b3df),
          X64Word_create(0x650a7354, 0x8baf63de),
          X64Word_create(0x766a0abb, 0x3c77b2a8),
          X64Word_create(0x81c2c92e, 0x47edaee6),
          X64Word_create(0x92722c85, 0x1482353b),
          X64Word_create(0xa2bfe8a1, 0x4cf10364),
          X64Word_create(0xa81a664b, 0xbc423001),
          X64Word_create(0xc24b8b70, 0xd0f89791),
          X64Word_create(0xc76c51a3, 0x0654be30),
          X64Word_create(0xd192e819, 0xd6ef5218),
          X64Word_create(0xd6990624, 0x5565a910),
          X64Word_create(0xf40e3585, 0x5771202a),
          X64Word_create(0x106aa070, 0x32bbd1b8),
          X64Word_create(0x19a4c116, 0xb8d2d0c8),
          X64Word_create(0x1e376c08, 0x5141ab53),
          X64Word_create(0x2748774c, 0xdf8eeb99),
          X64Word_create(0x34b0bcb5, 0xe19b48a8),
          X64Word_create(0x391c0cb3, 0xc5c95a63),
          X64Word_create(0x4ed8aa4a, 0xe3418acb),
          X64Word_create(0x5b9cca4f, 0x7763e373),
          X64Word_create(0x682e6ff3, 0xd6b2b8a3),
          X64Word_create(0x748f82ee, 0x5defb2fc),
          X64Word_create(0x78a5636f, 0x43172f60),
          X64Word_create(0x84c87814, 0xa1f0ab72),
          X64Word_create(0x8cc70208, 0x1a6439ec),
          X64Word_create(0x90befffa, 0x23631e28),
          X64Word_create(0xa4506ceb, 0xde82bde9),
          X64Word_create(0xbef9a3f7, 0xb2c67915),
          X64Word_create(0xc67178f2, 0xe372532b),
          X64Word_create(0xca273ece, 0xea26619c),
          X64Word_create(0xd186b8c7, 0x21c0c207),
          X64Word_create(0xeada7dd6, 0xcde0eb1e),
          X64Word_create(0xf57d4f7f, 0xee6ed178),
          X64Word_create(0x06f067aa, 0x72176fba),
          X64Word_create(0x0a637dc5, 0xa2c898a6),
          X64Word_create(0x113f9804, 0xbef90dae),
          X64Word_create(0x1b710b35, 0x131c471b),
          X64Word_create(0x28db77f5, 0x23047d84),
          X64Word_create(0x32caab7b, 0x40c72493),
          X64Word_create(0x3c9ebe0a, 0x15c9bebc),
          X64Word_create(0x431d67c4, 0x9c100d4c),
          X64Word_create(0x4cc5d4be, 0xcb3e42b6),
          X64Word_create(0x597f299c, 0xfc657e2a),
          X64Word_create(0x5fcb6fab, 0x3ad6faec),
          X64Word_create(0x6c44198c, 0x4a475817),
        ];
        // Reusable objects
        var W = [];
        (function () {
          for (var i = 0; i < 80; i++) {
            W[i] = X64Word_create();
          }
        })();
        /**
         * SHA-512 hash algorithm.
         */ var SHA512 = (C_algo.SHA512 = Hasher.extend({
          _doReset: function _doReset() {
            this._hash = new X64WordArray.init([
              new X64Word.init(0x6a09e667, 0xf3bcc908),
              new X64Word.init(0xbb67ae85, 0x84caa73b),
              new X64Word.init(0x3c6ef372, 0xfe94f82b),
              new X64Word.init(0xa54ff53a, 0x5f1d36f1),
              new X64Word.init(0x510e527f, 0xade682d1),
              new X64Word.init(0x9b05688c, 0x2b3e6c1f),
              new X64Word.init(0x1f83d9ab, 0xfb41bd6b),
              new X64Word.init(0x5be0cd19, 0x137e2179),
            ]);
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Shortcuts
            var H = this._hash.words;
            var H0 = H[0];
            var H1 = H[1];
            var H2 = H[2];
            var H3 = H[3];
            var H4 = H[4];
            var H5 = H[5];
            var H6 = H[6];
            var H7 = H[7];
            var H0h = H0.high;
            var H0l = H0.low;
            var H1h = H1.high;
            var H1l = H1.low;
            var H2h = H2.high;
            var H2l = H2.low;
            var H3h = H3.high;
            var H3l = H3.low;
            var H4h = H4.high;
            var H4l = H4.low;
            var H5h = H5.high;
            var H5l = H5.low;
            var H6h = H6.high;
            var H6l = H6.low;
            var H7h = H7.high;
            var H7l = H7.low;
            // Working variables
            var ah = H0h;
            var al = H0l;
            var bh = H1h;
            var bl = H1l;
            var ch = H2h;
            var cl = H2l;
            var dh = H3h;
            var dl = H3l;
            var eh = H4h;
            var el = H4l;
            var fh = H5h;
            var fl = H5l;
            var gh = H6h;
            var gl = H6l;
            var hh = H7h;
            var hl = H7l;
            // Rounds
            for (var i = 0; i < 80; i++) {
              var Wil;
              var Wih;
              // Shortcut
              var Wi = W[i];
              // Extend message
              if (i < 16) {
                Wih = Wi.high = M[offset + i * 2] | 0;
                Wil = Wi.low = M[offset + i * 2 + 1] | 0;
              } else {
                // Gamma0
                var gamma0x = W[i - 15];
                var gamma0xh = gamma0x.high;
                var gamma0xl = gamma0x.low;
                var gamma0h =
                  ((gamma0xh >>> 1) | (gamma0xl << 31)) ^
                  ((gamma0xh >>> 8) | (gamma0xl << 24)) ^
                  (gamma0xh >>> 7);
                var gamma0l =
                  ((gamma0xl >>> 1) | (gamma0xh << 31)) ^
                  ((gamma0xl >>> 8) | (gamma0xh << 24)) ^
                  ((gamma0xl >>> 7) | (gamma0xh << 25));
                // Gamma1
                var gamma1x = W[i - 2];
                var gamma1xh = gamma1x.high;
                var gamma1xl = gamma1x.low;
                var gamma1h =
                  ((gamma1xh >>> 19) | (gamma1xl << 13)) ^
                  ((gamma1xh << 3) | (gamma1xl >>> 29)) ^
                  (gamma1xh >>> 6);
                var gamma1l =
                  ((gamma1xl >>> 19) | (gamma1xh << 13)) ^
                  ((gamma1xl << 3) | (gamma1xh >>> 29)) ^
                  ((gamma1xl >>> 6) | (gamma1xh << 26));
                // W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16]
                var Wi7 = W[i - 7];
                var Wi7h = Wi7.high;
                var Wi7l = Wi7.low;
                var Wi16 = W[i - 16];
                var Wi16h = Wi16.high;
                var Wi16l = Wi16.low;
                Wil = gamma0l + Wi7l;
                Wih = gamma0h + Wi7h + (Wil >>> 0 < gamma0l >>> 0 ? 1 : 0);
                Wil = Wil + gamma1l;
                Wih = Wih + gamma1h + (Wil >>> 0 < gamma1l >>> 0 ? 1 : 0);
                Wil = Wil + Wi16l;
                Wih = Wih + Wi16h + (Wil >>> 0 < Wi16l >>> 0 ? 1 : 0);
                Wi.high = Wih;
                Wi.low = Wil;
              }
              var chh = (eh & fh) ^ (~eh & gh);
              var chl = (el & fl) ^ (~el & gl);
              var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
              var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
              var sigma0h =
                ((ah >>> 28) | (al << 4)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
              var sigma0l =
                ((al >>> 28) | (ah << 4)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
              var sigma1h =
                ((eh >>> 14) | (el << 18)) ^ ((eh >>> 18) | (el << 14)) ^ ((eh << 23) | (el >>> 9));
              var sigma1l =
                ((el >>> 14) | (eh << 18)) ^ ((el >>> 18) | (eh << 14)) ^ ((el << 23) | (eh >>> 9));
              // t1 = h + sigma1 + ch + K[i] + W[i]
              var Ki = K[i];
              var Kih = Ki.high;
              var Kil = Ki.low;
              var t1l = hl + sigma1l;
              var t1h = hh + sigma1h + (t1l >>> 0 < hl >>> 0 ? 1 : 0);
              var t1l = t1l + chl;
              var t1h = t1h + chh + (t1l >>> 0 < chl >>> 0 ? 1 : 0);
              var t1l = t1l + Kil;
              var t1h = t1h + Kih + (t1l >>> 0 < Kil >>> 0 ? 1 : 0);
              var t1l = t1l + Wil;
              var t1h = t1h + Wih + (t1l >>> 0 < Wil >>> 0 ? 1 : 0);
              // t2 = sigma0 + maj
              var t2l = sigma0l + majl;
              var t2h = sigma0h + majh + (t2l >>> 0 < sigma0l >>> 0 ? 1 : 0);
              // Update working variables
              hh = gh;
              hl = gl;
              gh = fh;
              gl = fl;
              fh = eh;
              fl = el;
              el = (dl + t1l) | 0;
              eh = (dh + t1h + (el >>> 0 < dl >>> 0 ? 1 : 0)) | 0;
              dh = ch;
              dl = cl;
              ch = bh;
              cl = bl;
              bh = ah;
              bl = al;
              al = (t1l + t2l) | 0;
              ah = (t1h + t2h + (al >>> 0 < t1l >>> 0 ? 1 : 0)) | 0;
            }
            // Intermediate hash value
            H0l = H0.low = H0l + al;
            H0.high = H0h + ah + (H0l >>> 0 < al >>> 0 ? 1 : 0);
            H1l = H1.low = H1l + bl;
            H1.high = H1h + bh + (H1l >>> 0 < bl >>> 0 ? 1 : 0);
            H2l = H2.low = H2l + cl;
            H2.high = H2h + ch + (H2l >>> 0 < cl >>> 0 ? 1 : 0);
            H3l = H3.low = H3l + dl;
            H3.high = H3h + dh + (H3l >>> 0 < dl >>> 0 ? 1 : 0);
            H4l = H4.low = H4l + el;
            H4.high = H4h + eh + (H4l >>> 0 < el >>> 0 ? 1 : 0);
            H5l = H5.low = H5l + fl;
            H5.high = H5h + fh + (H5l >>> 0 < fl >>> 0 ? 1 : 0);
            H6l = H6.low = H6l + gl;
            H6.high = H6h + gh + (H6l >>> 0 < gl >>> 0 ? 1 : 0);
            H7l = H7.low = H7l + hl;
            H7.high = H7h + hh + (H7l >>> 0 < hl >>> 0 ? 1 : 0);
          },
          _doFinalize: function _doFinalize() {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - (nBitsLeft % 32));
            dataWords[(((nBitsLeft + 128) >>> 10) << 5) + 30] = Math.floor(
              nBitsTotal / 0x100000000
            );
            dataWords[(((nBitsLeft + 128) >>> 10) << 5) + 31] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;
            // Hash final blocks
            this._process();
            // Convert hash to 32-bit word array before returning
            var hash = this._hash.toX32();
            // Return final computed hash
            return hash;
          },
          clone: function clone() {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();
            return clone;
          },
          blockSize: 1024 / 32,
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.SHA512('message');
         *     var hash = CryptoJS.SHA512(wordArray);
         */ C.SHA512 = Hasher._createHelper(SHA512);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacSHA512(message, key);
         */ C.HmacSHA512 = Hasher._createHmacHelper(SHA512);
      })();
      return CryptoJS.SHA512;
    });
  });

  var sha384 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, x64Core, sha512);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_x64 = C.x64;
        var X64Word = C_x64.Word;
        var X64WordArray = C_x64.WordArray;
        var C_algo = C.algo;
        var SHA512 = C_algo.SHA512;
        /**
         * SHA-384 hash algorithm.
         */ var SHA384 = (C_algo.SHA384 = SHA512.extend({
          _doReset: function _doReset() {
            this._hash = new X64WordArray.init([
              new X64Word.init(0xcbbb9d5d, 0xc1059ed8),
              new X64Word.init(0x629a292a, 0x367cd507),
              new X64Word.init(0x9159015a, 0x3070dd17),
              new X64Word.init(0x152fecd8, 0xf70e5939),
              new X64Word.init(0x67332667, 0xffc00b31),
              new X64Word.init(0x8eb44a87, 0x68581511),
              new X64Word.init(0xdb0c2e0d, 0x64f98fa7),
              new X64Word.init(0x47b5481d, 0xbefa4fa4),
            ]);
          },
          _doFinalize: function _doFinalize() {
            var hash = SHA512._doFinalize.call(this);
            hash.sigBytes -= 16;
            return hash;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.SHA384('message');
         *     var hash = CryptoJS.SHA384(wordArray);
         */ C.SHA384 = SHA512._createHelper(SHA384);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacSHA384(message, key);
         */ C.HmacSHA384 = SHA512._createHmacHelper(SHA384);
      })();
      return CryptoJS.SHA384;
    });
  });

  var sha3 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, x64Core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function (Math1) {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var Hasher = C_lib.Hasher;
        var C_x64 = C.x64;
        var X64Word = C_x64.Word;
        var C_algo = C.algo;
        // Constants tables
        var RHO_OFFSETS = [];
        var PI_INDEXES = [];
        var ROUND_CONSTANTS = [];
        // Compute Constants
        (function () {
          // Compute rho offset constants
          var x = 1,
            y = 0;
          for (var t = 0; t < 24; t++) {
            RHO_OFFSETS[x + 5 * y] = (((t + 1) * (t + 2)) / 2) % 64;
            var newX = y % 5;
            var newY = (2 * x + 3 * y) % 5;
            x = newX;
            y = newY;
          }
          // Compute pi index constants
          for (var x = 0; x < 5; x++) {
            for (var y = 0; y < 5; y++) {
              PI_INDEXES[x + 5 * y] = y + ((2 * x + 3 * y) % 5) * 5;
            }
          }
          // Compute round constants
          var LFSR = 0x01;
          for (var i = 0; i < 24; i++) {
            var roundConstantMsw = 0;
            var roundConstantLsw = 0;
            for (var j = 0; j < 7; j++) {
              if (LFSR & 0x01) {
                var bitPosition = (1 << j) - 1;
                if (bitPosition < 32) {
                  roundConstantLsw ^= 1 << bitPosition;
                } /* if (bitPosition >= 32) */ else {
                  roundConstantMsw ^= 1 << (bitPosition - 32);
                }
              }
              // Compute next LFSR
              if (LFSR & 0x80) {
                // Primitive polynomial over GF(2): x^8 + x^6 + x^5 + x^4 + 1
                LFSR = (LFSR << 1) ^ 0x71;
              } else {
                LFSR <<= 1;
              }
            }
            ROUND_CONSTANTS[i] = X64Word.create(roundConstantMsw, roundConstantLsw);
          }
        })();
        // Reusable objects for temporary values
        var T = [];
        (function () {
          for (var i = 0; i < 25; i++) {
            T[i] = X64Word.create();
          }
        })();
        /**
         * SHA-3 hash algorithm.
         */ var SHA3 = (C_algo.SHA3 = Hasher.extend({
          /**
           * Configuration options.
           *
           * @property {number} outputLength
           *   The desired number of bits in the output hash.
           *   Only values permitted are: 224, 256, 384, 512.
           *   Default: 512
           */ cfg: Hasher.cfg.extend({
            outputLength: 512,
          }),
          _doReset: function _doReset() {
            var state = (this._state = []);
            for (var i = 0; i < 25; i++) {
              state[i] = new X64Word.init();
            }
            this.blockSize = (1600 - 2 * this.cfg.outputLength) / 32;
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Shortcuts
            var state = this._state;
            var nBlockSizeLanes = this.blockSize / 2;
            // Absorb
            for (var i = 0; i < nBlockSizeLanes; i++) {
              // Shortcuts
              var M2i = M[offset + 2 * i];
              var M2i1 = M[offset + 2 * i + 1];
              // Swap endian
              M2i =
                (((M2i << 8) | (M2i >>> 24)) & 0x00ff00ff) |
                (((M2i << 24) | (M2i >>> 8)) & 0xff00ff00);
              M2i1 =
                (((M2i1 << 8) | (M2i1 >>> 24)) & 0x00ff00ff) |
                (((M2i1 << 24) | (M2i1 >>> 8)) & 0xff00ff00);
              // Absorb message into state
              var lane = state[i];
              lane.high ^= M2i1;
              lane.low ^= M2i;
            }
            // Rounds
            for (var round = 0; round < 24; round++) {
              // Theta
              for (var x = 0; x < 5; x++) {
                // Mix column lanes
                var tMsw = 0,
                  tLsw = 0;
                for (var y = 0; y < 5; y++) {
                  var lane = state[x + 5 * y];
                  tMsw ^= lane.high;
                  tLsw ^= lane.low;
                }
                // Temporary values
                var Tx = T[x];
                Tx.high = tMsw;
                Tx.low = tLsw;
              }
              for (var x = 0; x < 5; x++) {
                // Shortcuts
                var Tx4 = T[(x + 4) % 5];
                var Tx1 = T[(x + 1) % 5];
                var Tx1Msw = Tx1.high;
                var Tx1Lsw = Tx1.low;
                // Mix surrounding columns
                var tMsw = Tx4.high ^ ((Tx1Msw << 1) | (Tx1Lsw >>> 31));
                var tLsw = Tx4.low ^ ((Tx1Lsw << 1) | (Tx1Msw >>> 31));
                for (var y = 0; y < 5; y++) {
                  var lane = state[x + 5 * y];
                  lane.high ^= tMsw;
                  lane.low ^= tLsw;
                }
              }
              // Rho Pi
              for (var laneIndex = 1; laneIndex < 25; laneIndex++) {
                var tMsw;
                var tLsw;
                // Shortcuts
                var lane = state[laneIndex];
                var laneMsw = lane.high;
                var laneLsw = lane.low;
                var rhoOffset = RHO_OFFSETS[laneIndex];
                // Rotate lanes
                if (rhoOffset < 32) {
                  tMsw = (laneMsw << rhoOffset) | (laneLsw >>> (32 - rhoOffset));
                  tLsw = (laneLsw << rhoOffset) | (laneMsw >>> (32 - rhoOffset));
                } /* if (rhoOffset >= 32) */ else {
                  tMsw = (laneLsw << (rhoOffset - 32)) | (laneMsw >>> (64 - rhoOffset));
                  tLsw = (laneMsw << (rhoOffset - 32)) | (laneLsw >>> (64 - rhoOffset));
                }
                // Transpose lanes
                var TPiLane = T[PI_INDEXES[laneIndex]];
                TPiLane.high = tMsw;
                TPiLane.low = tLsw;
              }
              // Rho pi at x = y = 0
              var T0 = T[0];
              var state0 = state[0];
              T0.high = state0.high;
              T0.low = state0.low;
              // Chi
              for (var x = 0; x < 5; x++) {
                for (var y = 0; y < 5; y++) {
                  // Shortcuts
                  var laneIndex = x + 5 * y;
                  var lane = state[laneIndex];
                  var TLane = T[laneIndex];
                  var Tx1Lane = T[((x + 1) % 5) + 5 * y];
                  var Tx2Lane = T[((x + 2) % 5) + 5 * y];
                  // Mix rows
                  lane.high = TLane.high ^ (~Tx1Lane.high & Tx2Lane.high);
                  lane.low = TLane.low ^ (~Tx1Lane.low & Tx2Lane.low);
                }
              }
              // Iota
              var lane = state[0];
              var roundConstant = ROUND_CONSTANTS[round];
              lane.high ^= roundConstant.high;
              lane.low ^= roundConstant.low;
            }
          },
          _doFinalize: function _doFinalize() {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            var blockSizeBits = this.blockSize * 32;
            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x1 << (24 - (nBitsLeft % 32));
            dataWords[
              ((Math1.ceil((nBitsLeft + 1) / blockSizeBits) * blockSizeBits) >>> 5) - 1
            ] |= 0x80;
            data.sigBytes = dataWords.length * 4;
            // Hash final blocks
            this._process();
            // Shortcuts
            var state = this._state;
            var outputLengthBytes = this.cfg.outputLength / 8;
            var outputLengthLanes = outputLengthBytes / 8;
            // Squeeze
            var hashWords = [];
            for (var i = 0; i < outputLengthLanes; i++) {
              // Shortcuts
              var lane = state[i];
              var laneMsw = lane.high;
              var laneLsw = lane.low;
              // Swap endian
              laneMsw =
                (((laneMsw << 8) | (laneMsw >>> 24)) & 0x00ff00ff) |
                (((laneMsw << 24) | (laneMsw >>> 8)) & 0xff00ff00);
              laneLsw =
                (((laneLsw << 8) | (laneLsw >>> 24)) & 0x00ff00ff) |
                (((laneLsw << 24) | (laneLsw >>> 8)) & 0xff00ff00);
              // Squeeze state to retrieve hash
              hashWords.push(laneLsw);
              hashWords.push(laneMsw);
            }
            // Return final computed hash
            return new WordArray.init(hashWords, outputLengthBytes);
          },
          clone: function clone() {
            var clone = Hasher.clone.call(this);
            var state = (clone._state = this._state.slice(0));
            for (var i = 0; i < 25; i++) {
              state[i] = state[i].clone();
            }
            return clone;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.SHA3('message');
         *     var hash = CryptoJS.SHA3(wordArray);
         */ C.SHA3 = Hasher._createHelper(SHA3);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacSHA3(message, key);
         */ C.HmacSHA3 = Hasher._createHmacHelper(SHA3);
      })(Math);
      return CryptoJS.SHA3;
    });
  });

  var ripemd160 = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /** @preserve
		(c) 2012 by Cédric Mesnil. All rights reserved.

		Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

		    - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
		    - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

		THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
		*/ (function (Math1) {
        var f1 = function f1(x, y, z) {
          return x ^ y ^ z;
        };
        var f2 = function f2(x, y, z) {
          return (x & y) | (~x & z);
        };
        var f3 = function f3(x, y, z) {
          return (x | ~y) ^ z;
        };
        var f4 = function f4(x, y, z) {
          return (x & z) | (y & ~z);
        };
        var f5 = function f5(x, y, z) {
          return x ^ (y | ~z);
        };
        var rotl = function rotl(x, n) {
          return (x << n) | (x >>> (32 - n));
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var Hasher = C_lib.Hasher;
        var C_algo = C.algo;
        // Constants table
        var _zl = WordArray.create([
          0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9,
          5, 2, 14, 11, 8, 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, 1, 9, 11, 10, 0, 8,
          12, 4, 13, 3, 7, 15, 14, 5, 6, 2, 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
        ]);
        var _zr = WordArray.create([
          5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 6, 11, 3, 7, 0, 13, 5, 10, 14, 15,
          8, 12, 4, 9, 1, 2, 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, 8, 6, 4, 1, 3,
          11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9,
          11,
        ]);
        var _sl = WordArray.create([
          11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, 7, 6, 8, 13, 11, 9, 7, 15, 7, 12,
          15, 9, 11, 7, 13, 12, 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, 11, 12, 14,
          15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11,
          8, 5, 6,
        ]);
        var _sr = WordArray.create([
          8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, 9, 13, 15, 7, 12, 8, 9, 11, 7, 7,
          12, 7, 6, 15, 13, 11, 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, 15, 5, 8,
          11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15,
          13, 11, 11,
        ]);
        var _hl = WordArray.create([0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e]);
        var _hr = WordArray.create([0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000]);
        /**
         * RIPEMD160 hash algorithm.
         */ var RIPEMD160 = (C_algo.RIPEMD160 = Hasher.extend({
          _doReset: function _doReset() {
            this._hash = WordArray.create([
              0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
            ]);
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Swap endian
            for (var i = 0; i < 16; i++) {
              // Shortcuts
              var offset_i = offset + i;
              var M_offset_i = M[offset_i];
              // Swap
              M[offset_i] =
                (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
                (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00);
            }
            // Shortcut
            var H = this._hash.words;
            var hl = _hl.words;
            var hr = _hr.words;
            var zl = _zl.words;
            var zr = _zr.words;
            var sl = _sl.words;
            var sr = _sr.words;
            // Working variables
            var al, bl, cl, dl, el;
            var ar, br, cr, dr, er;
            ar = al = H[0];
            br = bl = H[1];
            cr = cl = H[2];
            dr = dl = H[3];
            er = el = H[4];
            // Computation
            var t;
            for (var i = 0; i < 80; i += 1) {
              t = (al + M[offset + zl[i]]) | 0;
              if (i < 16) {
                t += f1(bl, cl, dl) + hl[0];
              } else if (i < 32) {
                t += f2(bl, cl, dl) + hl[1];
              } else if (i < 48) {
                t += f3(bl, cl, dl) + hl[2];
              } else if (i < 64) {
                t += f4(bl, cl, dl) + hl[3];
              } else {
                t += f5(bl, cl, dl) + hl[4];
              }
              t = t | 0;
              t = rotl(t, sl[i]);
              t = (t + el) | 0;
              al = el;
              el = dl;
              dl = rotl(cl, 10);
              cl = bl;
              bl = t;
              t = (ar + M[offset + zr[i]]) | 0;
              if (i < 16) {
                t += f5(br, cr, dr) + hr[0];
              } else if (i < 32) {
                t += f4(br, cr, dr) + hr[1];
              } else if (i < 48) {
                t += f3(br, cr, dr) + hr[2];
              } else if (i < 64) {
                t += f2(br, cr, dr) + hr[3];
              } else {
                t += f1(br, cr, dr) + hr[4];
              }
              t = t | 0;
              t = rotl(t, sr[i]);
              t = (t + er) | 0;
              ar = er;
              er = dr;
              dr = rotl(cr, 10);
              cr = br;
              br = t;
            }
            // Intermediate hash value
            t = (H[1] + cl + dr) | 0;
            H[1] = (H[2] + dl + er) | 0;
            H[2] = (H[3] + el + ar) | 0;
            H[3] = (H[4] + al + br) | 0;
            H[4] = (H[0] + bl + cr) | 0;
            H[0] = t;
          },
          _doFinalize: function _doFinalize() {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - (nBitsLeft % 32));
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] =
              (((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
              (((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00);
            data.sigBytes = (dataWords.length + 1) * 4;
            // Hash final blocks
            this._process();
            // Shortcuts
            var hash = this._hash;
            var H = hash.words;
            // Swap endian
            for (var i = 0; i < 5; i++) {
              // Shortcut
              var H_i = H[i];
              // Swap
              H[i] =
                (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
                (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
            }
            // Return final computed hash
            return hash;
          },
          clone: function clone() {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();
            return clone;
          },
        }));
        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.RIPEMD160('message');
         *     var hash = CryptoJS.RIPEMD160(wordArray);
         */ C.RIPEMD160 = Hasher._createHelper(RIPEMD160);
        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacRIPEMD160(message, key);
         */ C.HmacRIPEMD160 = Hasher._createHmacHelper(RIPEMD160);
      })();
      return CryptoJS.RIPEMD160;
    });
  });

  var hmac = createCommonjsModule(function (module, exports) {
    (function (root, factory) {
      {
        // CommonJS
        module.exports = factory(core);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Base = C_lib.Base;
        var C_enc = C.enc;
        var Utf8 = C_enc.Utf8;
        var C_algo = C.algo;
        /**
         * HMAC algorithm.
         */ C_algo.HMAC = Base.extend({
          /**
           * Initializes a newly created HMAC.
           *
           * @param {Hasher} hasher The hash algorithm to use.
           * @param {WordArray|string} key The secret key.
           *
           * @example
           *
           *     var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
           */ init: function init(hasher, key) {
            // Init hasher
            hasher = this._hasher = new hasher.init();
            // Convert string to WordArray, else assume WordArray already
            if (typeof key == "string") {
              key = Utf8.parse(key);
            }
            // Shortcuts
            var hasherBlockSize = hasher.blockSize;
            var hasherBlockSizeBytes = hasherBlockSize * 4;
            // Allow arbitrary length keys
            if (key.sigBytes > hasherBlockSizeBytes) {
              key = hasher.finalize(key);
            }
            // Clamp excess bits
            key.clamp();
            // Clone key for inner and outer pads
            var oKey = (this._oKey = key.clone());
            var iKey = (this._iKey = key.clone());
            // Shortcuts
            var oKeyWords = oKey.words;
            var iKeyWords = iKey.words;
            // XOR keys with pad constants
            for (var i = 0; i < hasherBlockSize; i++) {
              oKeyWords[i] ^= 0x5c5c5c5c;
              iKeyWords[i] ^= 0x36363636;
            }
            oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
            // Set initial values
            this.reset();
          },
          /**
           * Resets this HMAC to its initial state.
           *
           * @example
           *
           *     hmacHasher.reset();
           */ reset: function reset() {
            // Shortcut
            var hasher = this._hasher;
            // Reset
            hasher.reset();
            hasher.update(this._iKey);
          },
          /**
           * Updates this HMAC with a message.
           *
           * @param {WordArray|string} messageUpdate The message to append.
           *
           * @return {HMAC} This HMAC instance.
           *
           * @example
           *
           *     hmacHasher.update('message');
           *     hmacHasher.update(wordArray);
           */ update: function update(messageUpdate) {
            this._hasher.update(messageUpdate);
            // Chainable
            return this;
          },
          /**
           * Finalizes the HMAC computation.
           * Note that the finalize operation is effectively a destructive, read-once operation.
           *
           * @param {WordArray|string} messageUpdate (Optional) A final message update.
           *
           * @return {WordArray} The HMAC.
           *
           * @example
           *
           *     var hmac = hmacHasher.finalize();
           *     var hmac = hmacHasher.finalize('message');
           *     var hmac = hmacHasher.finalize(wordArray);
           */ finalize: function finalize(messageUpdate) {
            // Shortcut
            var hasher = this._hasher;
            // Compute HMAC
            var innerHash = hasher.finalize(messageUpdate);
            hasher.reset();
            var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
            return hmac;
          },
        });
      })();
    });
  });

  var pbkdf2 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, sha1, hmac);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Base = C_lib.Base;
        var WordArray = C_lib.WordArray;
        var C_algo = C.algo;
        var SHA1 = C_algo.SHA1;
        var HMAC = C_algo.HMAC;
        /**
         * Password-Based Key Derivation Function 2 algorithm.
         */ var PBKDF2 = (C_algo.PBKDF2 = Base.extend({
          /**
           * Configuration options.
           *
           * @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
           * @property {Hasher} hasher The hasher to use. Default: SHA1
           * @property {number} iterations The number of iterations to perform. Default: 1
           */ cfg: Base.extend({
            keySize: 128 / 32,
            hasher: SHA1,
            iterations: 1,
          }),
          /**
           * Initializes a newly created key derivation function.
           *
           * @param {Object} cfg (Optional) The configuration options to use for the derivation.
           *
           * @example
           *
           *     var kdf = CryptoJS.algo.PBKDF2.create();
           *     var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8 });
           *     var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8, iterations: 1000 });
           */ init: function init(cfg) {
            this.cfg = this.cfg.extend(cfg);
          },
          /**
           * Computes the Password-Based Key Derivation Function 2.
           *
           * @param {WordArray|string} password The password.
           * @param {WordArray|string} salt A salt.
           *
           * @return {WordArray} The derived key.
           *
           * @example
           *
           *     var key = kdf.compute(password, salt);
           */ compute: function compute(password, salt) {
            // Shortcut
            var cfg = this.cfg;
            // Init HMAC
            var hmac = HMAC.create(cfg.hasher, password);
            // Initial values
            var derivedKey = WordArray.create();
            var blockIndex = WordArray.create([0x00000001]);
            // Shortcuts
            var derivedKeyWords = derivedKey.words;
            var blockIndexWords = blockIndex.words;
            var keySize = cfg.keySize;
            var iterations = cfg.iterations;
            // Generate key
            while (derivedKeyWords.length < keySize) {
              var block = hmac.update(salt).finalize(blockIndex);
              hmac.reset();
              // Shortcuts
              var blockWords = block.words;
              var blockWordsLength = blockWords.length;
              // Iterations
              var intermediate = block;
              for (var i = 1; i < iterations; i++) {
                intermediate = hmac.finalize(intermediate);
                hmac.reset();
                // Shortcut
                var intermediateWords = intermediate.words;
                // XOR intermediate with block
                for (var j = 0; j < blockWordsLength; j++) {
                  blockWords[j] ^= intermediateWords[j];
                }
              }
              derivedKey.concat(block);
              blockIndexWords[0]++;
            }
            derivedKey.sigBytes = keySize * 4;
            return derivedKey;
          },
        }));
        /**
         * Computes the Password-Based Key Derivation Function 2.
         *
         * @param {WordArray|string} password The password.
         * @param {WordArray|string} salt A salt.
         * @param {Object} cfg (Optional) The configuration options to use for this computation.
         *
         * @return {WordArray} The derived key.
         *
         * @static
         *
         * @example
         *
         *     var key = CryptoJS.PBKDF2(password, salt);
         *     var key = CryptoJS.PBKDF2(password, salt, { keySize: 8 });
         *     var key = CryptoJS.PBKDF2(password, salt, { keySize: 8, iterations: 1000 });
         */ C.PBKDF2 = function (password, salt, cfg) {
          return PBKDF2.create(cfg).compute(password, salt);
        };
      })();
      return CryptoJS.PBKDF2;
    });
  });

  var evpkdf = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, sha1, hmac);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Base = C_lib.Base;
        var WordArray = C_lib.WordArray;
        var C_algo = C.algo;
        var MD5 = C_algo.MD5;
        /**
         * This key derivation function is meant to conform with EVP_BytesToKey.
         * www.openssl.org/docs/crypto/EVP_BytesToKey.html
         */ var EvpKDF = (C_algo.EvpKDF = Base.extend({
          /**
           * Configuration options.
           *
           * @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
           * @property {Hasher} hasher The hash algorithm to use. Default: MD5
           * @property {number} iterations The number of iterations to perform. Default: 1
           */ cfg: Base.extend({
            keySize: 128 / 32,
            hasher: MD5,
            iterations: 1,
          }),
          /**
           * Initializes a newly created key derivation function.
           *
           * @param {Object} cfg (Optional) The configuration options to use for the derivation.
           *
           * @example
           *
           *     var kdf = CryptoJS.algo.EvpKDF.create();
           *     var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
           *     var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
           */ init: function init(cfg) {
            this.cfg = this.cfg.extend(cfg);
          },
          /**
           * Derives a key from a password.
           *
           * @param {WordArray|string} password The password.
           * @param {WordArray|string} salt A salt.
           *
           * @return {WordArray} The derived key.
           *
           * @example
           *
           *     var key = kdf.compute(password, salt);
           */ compute: function compute(password, salt) {
            var block;
            // Shortcut
            var cfg = this.cfg;
            // Init hasher
            var hasher = cfg.hasher.create();
            // Initial values
            var derivedKey = WordArray.create();
            // Shortcuts
            var derivedKeyWords = derivedKey.words;
            var keySize = cfg.keySize;
            var iterations = cfg.iterations;
            // Generate key
            while (derivedKeyWords.length < keySize) {
              if (block) {
                hasher.update(block);
              }
              block = hasher.update(password).finalize(salt);
              hasher.reset();
              // Iterations
              for (var i = 1; i < iterations; i++) {
                block = hasher.finalize(block);
                hasher.reset();
              }
              derivedKey.concat(block);
            }
            derivedKey.sigBytes = keySize * 4;
            return derivedKey;
          },
        }));
        /**
         * Derives a key from a password.
         *
         * @param {WordArray|string} password The password.
         * @param {WordArray|string} salt A salt.
         * @param {Object} cfg (Optional) The configuration options to use for this computation.
         *
         * @return {WordArray} The derived key.
         *
         * @static
         *
         * @example
         *
         *     var key = CryptoJS.EvpKDF(password, salt);
         *     var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
         *     var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
         */ C.EvpKDF = function (password, salt, cfg) {
          return EvpKDF.create(cfg).compute(password, salt);
        };
      })();
      return CryptoJS.EvpKDF;
    });
  });

  var cipherCore = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, evpkdf);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * Cipher core components.
       */ CryptoJS.lib.Cipher ||
        (function (undefined1) {
          // Shortcuts
          var C = CryptoJS;
          var C_lib = C.lib;
          var Base = C_lib.Base;
          var WordArray = C_lib.WordArray;
          var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
          var C_enc = C.enc;
          C_enc.Utf8;
          var Base64 = C_enc.Base64;
          var C_algo = C.algo;
          var EvpKDF = C_algo.EvpKDF;
          /**
           * Abstract base cipher template.
           *
           * @property {number} keySize This cipher's key size. Default: 4 (128 bits)
           * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
           * @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
           * @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
           */ var Cipher = (C_lib.Cipher = BufferedBlockAlgorithm.extend({
            /**
             * Configuration options.
             *
             * @property {WordArray} iv The IV to use for this operation.
             */ cfg: Base.extend(),
            /**
             * Creates this cipher in encryption mode.
             *
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {Cipher} A cipher instance.
             *
             * @static
             *
             * @example
             *
             *     var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
             */ createEncryptor: function createEncryptor(key, cfg) {
              return this.create(this._ENC_XFORM_MODE, key, cfg);
            },
            /**
             * Creates this cipher in decryption mode.
             *
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {Cipher} A cipher instance.
             *
             * @static
             *
             * @example
             *
             *     var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
             */ createDecryptor: function createDecryptor(key, cfg) {
              return this.create(this._DEC_XFORM_MODE, key, cfg);
            },
            /**
             * Initializes a newly created cipher.
             *
             * @param {number} xformMode Either the encryption or decryption transormation mode constant.
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @example
             *
             *     var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
             */ init: function init(xformMode, key, cfg) {
              // Apply config defaults
              this.cfg = this.cfg.extend(cfg);
              // Store transform mode and key
              this._xformMode = xformMode;
              this._key = key;
              // Set initial values
              this.reset();
            },
            /**
             * Resets this cipher to its initial state.
             *
             * @example
             *
             *     cipher.reset();
             */ reset: function reset() {
              // Reset data buffer
              BufferedBlockAlgorithm.reset.call(this);
              // Perform concrete-cipher logic
              this._doReset();
            },
            /**
             * Adds data to be encrypted or decrypted.
             *
             * @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
             *
             * @return {WordArray} The data after processing.
             *
             * @example
             *
             *     var encrypted = cipher.process('data');
             *     var encrypted = cipher.process(wordArray);
             */ process: function process(dataUpdate) {
              // Append
              this._append(dataUpdate);
              // Process available blocks
              return this._process();
            },
            /**
             * Finalizes the encryption or decryption process.
             * Note that the finalize operation is effectively a destructive, read-once operation.
             *
             * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
             *
             * @return {WordArray} The data after final processing.
             *
             * @example
             *
             *     var encrypted = cipher.finalize();
             *     var encrypted = cipher.finalize('data');
             *     var encrypted = cipher.finalize(wordArray);
             */ finalize: function finalize(dataUpdate) {
              // Final data update
              if (dataUpdate) {
                this._append(dataUpdate);
              }
              // Perform concrete-cipher logic
              var finalProcessedData = this._doFinalize();
              return finalProcessedData;
            },
            keySize: 128 / 32,
            ivSize: 128 / 32,
            _ENC_XFORM_MODE: 1,
            _DEC_XFORM_MODE: 2,
            /**
             * Creates shortcut functions to a cipher's object interface.
             *
             * @param {Cipher} cipher The cipher to create a helper for.
             *
             * @return {Object} An object with encrypt and decrypt shortcut functions.
             *
             * @static
             *
             * @example
             *
             *     var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
             */ _createHelper: (function () {
              var selectCipherStrategy = function selectCipherStrategy(key) {
                if (typeof key == "string") {
                  return PasswordBasedCipher;
                } else {
                  return SerializableCipher;
                }
              };
              return function (cipher) {
                return {
                  encrypt: function encrypt(message, key, cfg) {
                    return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
                  },
                  decrypt: function decrypt(ciphertext, key, cfg) {
                    return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
                  },
                };
              };
            })(),
          }));
          /**
           * Abstract base stream cipher template.
           *
           * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
           */ C_lib.StreamCipher = Cipher.extend({
            _doFinalize: function _doFinalize() {
              // Process partial blocks
              var finalProcessedBlocks = this._process(!!"flush");
              return finalProcessedBlocks;
            },
            blockSize: 1,
          });
          /**
           * Mode namespace.
           */ var C_mode = (C.mode = {});
          /**
           * Abstract base block cipher mode template.
           */ var BlockCipherMode = (C_lib.BlockCipherMode = Base.extend({
            /**
             * Creates this mode for encryption.
             *
             * @param {Cipher} cipher A block cipher instance.
             * @param {Array} iv The IV words.
             *
             * @static
             *
             * @example
             *
             *     var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
             */ createEncryptor: function createEncryptor(cipher, iv) {
              return this.Encryptor.create(cipher, iv);
            },
            /**
             * Creates this mode for decryption.
             *
             * @param {Cipher} cipher A block cipher instance.
             * @param {Array} iv The IV words.
             *
             * @static
             *
             * @example
             *
             *     var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
             */ createDecryptor: function createDecryptor(cipher, iv) {
              return this.Decryptor.create(cipher, iv);
            },
            /**
             * Initializes a newly created mode.
             *
             * @param {Cipher} cipher A block cipher instance.
             * @param {Array} iv The IV words.
             *
             * @example
             *
             *     var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
             */ init: function init(cipher, iv) {
              this._cipher = cipher;
              this._iv = iv;
            },
          }));
          /**
           * Cipher Block Chaining mode.
           */ var CBC = (C_mode.CBC = (function () {
            var xorBlock = function xorBlock(words, offset, blockSize) {
              var block;
              // Shortcut
              var iv = this._iv;
              // Choose mixing block
              if (iv) {
                block = iv;
                // Remove IV for subsequent blocks
                this._iv = undefined1;
              } else {
                block = this._prevBlock;
              }
              // XOR blocks
              for (var i = 0; i < blockSize; i++) {
                words[offset + i] ^= block[i];
              }
            };
            /**
             * Abstract base CBC mode.
             */ var CBC = BlockCipherMode.extend();
            /**
             * CBC encryptor.
             */ CBC.Encryptor = CBC.extend({
              /**
               * Processes the data block at offset.
               *
               * @param {Array} words The data words to operate on.
               * @param {number} offset The offset where the block starts.
               *
               * @example
               *
               *     mode.processBlock(data.words, offset);
               */ processBlock: function processBlock(words, offset) {
                // Shortcuts
                var cipher = this._cipher;
                var blockSize = cipher.blockSize;
                // XOR and encrypt
                xorBlock.call(this, words, offset, blockSize);
                cipher.encryptBlock(words, offset);
                // Remember this block to use with next block
                this._prevBlock = words.slice(offset, offset + blockSize);
              },
            });
            /**
             * CBC decryptor.
             */ CBC.Decryptor = CBC.extend({
              /**
               * Processes the data block at offset.
               *
               * @param {Array} words The data words to operate on.
               * @param {number} offset The offset where the block starts.
               *
               * @example
               *
               *     mode.processBlock(data.words, offset);
               */ processBlock: function processBlock(words, offset) {
                // Shortcuts
                var cipher = this._cipher;
                var blockSize = cipher.blockSize;
                // Remember this block to use with next block
                var thisBlock = words.slice(offset, offset + blockSize);
                // Decrypt and XOR
                cipher.decryptBlock(words, offset);
                xorBlock.call(this, words, offset, blockSize);
                // This block becomes the previous block
                this._prevBlock = thisBlock;
              },
            });
            return CBC;
          })());
          /**
           * Padding namespace.
           */ var C_pad = (C.pad = {});
          /**
           * PKCS #5/7 padding strategy.
           */ var Pkcs7 = (C_pad.Pkcs7 = {
            /**
             * Pads data using the algorithm defined in PKCS #5/7.
             *
             * @param {WordArray} data The data to pad.
             * @param {number} blockSize The multiple that the data should be padded to.
             *
             * @static
             *
             * @example
             *
             *     CryptoJS.pad.Pkcs7.pad(wordArray, 4);
             */ pad: function pad(data, blockSize) {
              // Shortcut
              var blockSizeBytes = blockSize * 4;
              // Count padding bytes
              var nPaddingBytes = blockSizeBytes - (data.sigBytes % blockSizeBytes);
              // Create padding word
              var paddingWord =
                (nPaddingBytes << 24) |
                (nPaddingBytes << 16) |
                (nPaddingBytes << 8) |
                nPaddingBytes;
              // Create padding
              var paddingWords = [];
              for (var i = 0; i < nPaddingBytes; i += 4) {
                paddingWords.push(paddingWord);
              }
              var padding = WordArray.create(paddingWords, nPaddingBytes);
              // Add padding
              data.concat(padding);
            },
            /**
             * Unpads data that had been padded using the algorithm defined in PKCS #5/7.
             *
             * @param {WordArray} data The data to unpad.
             *
             * @static
             *
             * @example
             *
             *     CryptoJS.pad.Pkcs7.unpad(wordArray);
             */ unpad: function unpad(data) {
              // Get number of padding bytes from last byte
              var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
              // Remove padding
              data.sigBytes -= nPaddingBytes;
            },
          });
          /**
           * Abstract base block cipher template.
           *
           * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
           */ C_lib.BlockCipher = Cipher.extend({
            /**
             * Configuration options.
             *
             * @property {Mode} mode The block mode to use. Default: CBC
             * @property {Padding} padding The padding strategy to use. Default: Pkcs7
             */ cfg: Cipher.cfg.extend({
              mode: CBC,
              padding: Pkcs7,
            }),
            reset: function reset() {
              var modeCreator;
              // Reset cipher
              Cipher.reset.call(this);
              // Shortcuts
              var cfg = this.cfg;
              var iv = cfg.iv;
              var mode = cfg.mode;
              // Reset block mode
              if (this._xformMode == this._ENC_XFORM_MODE) {
                modeCreator = mode.createEncryptor;
              } /* if (this._xformMode == this._DEC_XFORM_MODE) */ else {
                modeCreator = mode.createDecryptor;
                // Keep at least one block in the buffer for unpadding
                this._minBufferSize = 1;
              }
              if (this._mode && this._mode.__creator == modeCreator) {
                this._mode.init(this, iv && iv.words);
              } else {
                this._mode = modeCreator.call(mode, this, iv && iv.words);
                this._mode.__creator = modeCreator;
              }
            },
            _doProcessBlock: function _doProcessBlock(words, offset) {
              this._mode.processBlock(words, offset);
            },
            _doFinalize: function _doFinalize() {
              var finalProcessedBlocks;
              // Shortcut
              var padding = this.cfg.padding;
              // Finalize
              if (this._xformMode == this._ENC_XFORM_MODE) {
                // Pad data
                padding.pad(this._data, this.blockSize);
                // Process final blocks
                finalProcessedBlocks = this._process(!!"flush");
              } /* if (this._xformMode == this._DEC_XFORM_MODE) */ else {
                // Process final blocks
                finalProcessedBlocks = this._process(!!"flush");
                // Unpad data
                padding.unpad(finalProcessedBlocks);
              }
              return finalProcessedBlocks;
            },
            blockSize: 128 / 32,
          });
          /**
           * A collection of cipher parameters.
           *
           * @property {WordArray} ciphertext The raw ciphertext.
           * @property {WordArray} key The key to this ciphertext.
           * @property {WordArray} iv The IV used in the ciphering operation.
           * @property {WordArray} salt The salt used with a key derivation function.
           * @property {Cipher} algorithm The cipher algorithm.
           * @property {Mode} mode The block mode used in the ciphering operation.
           * @property {Padding} padding The padding scheme used in the ciphering operation.
           * @property {number} blockSize The block size of the cipher.
           * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
           */ var CipherParams = (C_lib.CipherParams = Base.extend({
            /**
             * Initializes a newly created cipher params object.
             *
             * @param {Object} cipherParams An object with any of the possible cipher parameters.
             *
             * @example
             *
             *     var cipherParams = CryptoJS.lib.CipherParams.create({
             *         ciphertext: ciphertextWordArray,
             *         key: keyWordArray,
             *         iv: ivWordArray,
             *         salt: saltWordArray,
             *         algorithm: CryptoJS.algo.AES,
             *         mode: CryptoJS.mode.CBC,
             *         padding: CryptoJS.pad.PKCS7,
             *         blockSize: 4,
             *         formatter: CryptoJS.format.OpenSSL
             *     });
             */ init: function init(cipherParams) {
              this.mixIn(cipherParams);
            },
            /**
             * Converts this cipher params object to a string.
             *
             * @param {Format} formatter (Optional) The formatting strategy to use.
             *
             * @return {string} The stringified cipher params.
             *
             * @throws Error If neither the formatter nor the default formatter is set.
             *
             * @example
             *
             *     var string = cipherParams + '';
             *     var string = cipherParams.toString();
             *     var string = cipherParams.toString(CryptoJS.format.OpenSSL);
             */ toString: function toString(formatter) {
              return (formatter || this.formatter).stringify(this);
            },
          }));
          /**
           * Format namespace.
           */ var C_format = (C.format = {});
          /**
           * OpenSSL formatting strategy.
           */ var OpenSSLFormatter = (C_format.OpenSSL = {
            /**
             * Converts a cipher params object to an OpenSSL-compatible string.
             *
             * @param {CipherParams} cipherParams The cipher params object.
             *
             * @return {string} The OpenSSL-compatible string.
             *
             * @static
             *
             * @example
             *
             *     var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
             */ stringify: function stringify(cipherParams) {
              var wordArray;
              // Shortcuts
              var ciphertext = cipherParams.ciphertext;
              var salt = cipherParams.salt;
              // Format
              if (salt) {
                wordArray = WordArray.create([0x53616c74, 0x65645f5f])
                  .concat(salt)
                  .concat(ciphertext);
              } else {
                wordArray = ciphertext;
              }
              return wordArray.toString(Base64);
            },
            /**
             * Converts an OpenSSL-compatible string to a cipher params object.
             *
             * @param {string} openSSLStr The OpenSSL-compatible string.
             *
             * @return {CipherParams} The cipher params object.
             *
             * @static
             *
             * @example
             *
             *     var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
             */ parse: function parse(openSSLStr) {
              var salt;
              // Parse base64
              var ciphertext = Base64.parse(openSSLStr);
              // Shortcut
              var ciphertextWords = ciphertext.words;
              // Test for salt
              if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
                // Extract salt
                salt = WordArray.create(ciphertextWords.slice(2, 4));
                // Remove salt from ciphertext
                ciphertextWords.splice(0, 4);
                ciphertext.sigBytes -= 16;
              }
              return CipherParams.create({
                ciphertext: ciphertext,
                salt: salt,
              });
            },
          });
          /**
           * A cipher wrapper that returns ciphertext as a serializable cipher params object.
           */ var SerializableCipher = (C_lib.SerializableCipher = Base.extend({
            /**
             * Configuration options.
             *
             * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
             */ cfg: Base.extend({
              format: OpenSSLFormatter,
            }),
            /**
             * Encrypts a message.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {WordArray|string} message The message to encrypt.
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {CipherParams} A cipher params object.
             *
             * @static
             *
             * @example
             *
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
             */ encrypt: function encrypt(cipher, message, key, cfg) {
              // Apply config defaults
              cfg = this.cfg.extend(cfg);
              // Encrypt
              var encryptor = cipher.createEncryptor(key, cfg);
              var ciphertext = encryptor.finalize(message);
              // Shortcut
              var cipherCfg = encryptor.cfg;
              // Create and return serializable cipher params
              return CipherParams.create({
                ciphertext: ciphertext,
                key: key,
                iv: cipherCfg.iv,
                algorithm: cipher,
                mode: cipherCfg.mode,
                padding: cipherCfg.padding,
                blockSize: cipher.blockSize,
                formatter: cfg.format,
              });
            },
            /**
             * Decrypts serialized ciphertext.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {WordArray} The plaintext.
             *
             * @static
             *
             * @example
             *
             *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
             *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
             */ decrypt: function decrypt(cipher, ciphertext, key, cfg) {
              // Apply config defaults
              cfg = this.cfg.extend(cfg);
              // Convert string to CipherParams
              ciphertext = this._parse(ciphertext, cfg.format);
              // Decrypt
              var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
              return plaintext;
            },
            /**
             * Converts serialized ciphertext to CipherParams,
             * else assumed CipherParams already and returns ciphertext unchanged.
             *
             * @param {CipherParams|string} ciphertext The ciphertext.
             * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
             *
             * @return {CipherParams} The unserialized ciphertext.
             *
             * @static
             *
             * @example
             *
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
             */ _parse: function _parse(ciphertext, format) {
              if (typeof ciphertext == "string") {
                return format.parse(ciphertext, this);
              } else {
                return ciphertext;
              }
            },
          }));
          /**
           * Key derivation function namespace.
           */ var C_kdf = (C.kdf = {});
          /**
           * OpenSSL key derivation function.
           */ var OpenSSLKdf = (C_kdf.OpenSSL = {
            /**
             * Derives a key and IV from a password.
             *
             * @param {string} password The password to derive from.
             * @param {number} keySize The size in words of the key to generate.
             * @param {number} ivSize The size in words of the IV to generate.
             * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
             *
             * @return {CipherParams} A cipher params object with the key, IV, and salt.
             *
             * @static
             *
             * @example
             *
             *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
             *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
             */ execute: function execute(password, keySize, ivSize, salt) {
              // Generate random salt
              if (!salt) {
                salt = WordArray.random(64 / 8);
              }
              // Derive key and IV
              var key = EvpKDF.create({
                keySize: keySize + ivSize,
              }).compute(password, salt);
              // Separate key and IV
              var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
              key.sigBytes = keySize * 4;
              // Return params
              return CipherParams.create({
                key: key,
                iv: iv,
                salt: salt,
              });
            },
          });
          /**
           * A serializable cipher wrapper that derives the key from a password,
           * and returns ciphertext as a serializable cipher params object.
           */ var PasswordBasedCipher = (C_lib.PasswordBasedCipher = SerializableCipher.extend({
            /**
             * Configuration options.
             *
             * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
             */ cfg: SerializableCipher.cfg.extend({
              kdf: OpenSSLKdf,
            }),
            /**
             * Encrypts a message using a password.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {WordArray|string} message The message to encrypt.
             * @param {string} password The password.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {CipherParams} A cipher params object.
             *
             * @static
             *
             * @example
             *
             *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
             *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
             */ encrypt: function encrypt(cipher, message, password, cfg) {
              // Apply config defaults
              cfg = this.cfg.extend(cfg);
              // Derive key and other params
              var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
              // Add IV to config
              cfg.iv = derivedParams.iv;
              // Encrypt
              var ciphertext = SerializableCipher.encrypt.call(
                this,
                cipher,
                message,
                derivedParams.key,
                cfg
              );
              // Mix in derived params
              ciphertext.mixIn(derivedParams);
              return ciphertext;
            },
            /**
             * Decrypts serialized ciphertext using a password.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
             * @param {string} password The password.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {WordArray} The plaintext.
             *
             * @static
             *
             * @example
             *
             *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
             *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
             */ decrypt: function decrypt(cipher, ciphertext, password, cfg) {
              // Apply config defaults
              cfg = this.cfg.extend(cfg);
              // Convert string to CipherParams
              ciphertext = this._parse(ciphertext, cfg.format);
              // Derive key and other params
              var derivedParams = cfg.kdf.execute(
                password,
                cipher.keySize,
                cipher.ivSize,
                ciphertext.salt
              );
              // Add IV to config
              cfg.iv = derivedParams.iv;
              // Decrypt
              var plaintext = SerializableCipher.decrypt.call(
                this,
                cipher,
                ciphertext,
                derivedParams.key,
                cfg
              );
              return plaintext;
            },
          }));
        })();
    });
  });

  var modeCfb = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * Cipher Feedback block mode.
       */ CryptoJS.mode.CFB = (function () {
        var generateKeystreamAndEncrypt = function generateKeystreamAndEncrypt(
          words,
          offset,
          blockSize,
          cipher
        ) {
          var keystream;
          // Shortcut
          var iv = this._iv;
          // Generate keystream
          if (iv) {
            keystream = iv.slice(0);
            // Remove IV for subsequent blocks
            this._iv = undefined;
          } else {
            keystream = this._prevBlock;
          }
          cipher.encryptBlock(keystream, 0);
          // Encrypt
          for (var i = 0; i < blockSize; i++) {
            words[offset + i] ^= keystream[i];
          }
        };
        var CFB = CryptoJS.lib.BlockCipherMode.extend();
        CFB.Encryptor = CFB.extend({
          processBlock: function processBlock(words, offset) {
            // Shortcuts
            var cipher = this._cipher;
            var blockSize = cipher.blockSize;
            generateKeystreamAndEncrypt.call(this, words, offset, blockSize, cipher);
            // Remember this block to use with next block
            this._prevBlock = words.slice(offset, offset + blockSize);
          },
        });
        CFB.Decryptor = CFB.extend({
          processBlock: function processBlock(words, offset) {
            // Shortcuts
            var cipher = this._cipher;
            var blockSize = cipher.blockSize;
            // Remember this block to use with next block
            var thisBlock = words.slice(offset, offset + blockSize);
            generateKeystreamAndEncrypt.call(this, words, offset, blockSize, cipher);
            // This block becomes the previous block
            this._prevBlock = thisBlock;
          },
        });
        return CFB;
      })();
      return CryptoJS.mode.CFB;
    });
  });

  var modeCtr = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * Counter block mode.
       */ CryptoJS.mode.CTR = (function () {
        var CTR = CryptoJS.lib.BlockCipherMode.extend();
        var Encryptor = (CTR.Encryptor = CTR.extend({
          processBlock: function processBlock(words, offset) {
            // Shortcuts
            var cipher = this._cipher;
            var blockSize = cipher.blockSize;
            var iv = this._iv;
            var counter = this._counter;
            // Generate keystream
            if (iv) {
              counter = this._counter = iv.slice(0);
              // Remove IV for subsequent blocks
              this._iv = undefined;
            }
            var keystream = counter.slice(0);
            cipher.encryptBlock(keystream, 0);
            // Increment counter
            counter[blockSize - 1] = (counter[blockSize - 1] + 1) | 0;
            // Encrypt
            for (var i = 0; i < blockSize; i++) {
              words[offset + i] ^= keystream[i];
            }
          },
        }));
        CTR.Decryptor = Encryptor;
        return CTR;
      })();
      return CryptoJS.mode.CTR;
    });
  });

  var modeCtrGladman = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /** @preserve
       * Counter block mode compatible with  Dr Brian Gladman fileenc.c
       * derived from CryptoJS.mode.CTR
       * Jan Hruby jhruby.web@gmail.com
       */ CryptoJS.mode.CTRGladman = (function () {
        var incWord = function incWord(word) {
          if (((word >> 24) & 0xff) === 0xff) {
            var b1 = (word >> 16) & 0xff;
            var b2 = (word >> 8) & 0xff;
            var b3 = word & 0xff;
            if (b1 === 0xff) {
              b1 = 0;
              if (b2 === 0xff) {
                b2 = 0;
                if (b3 === 0xff) {
                  b3 = 0;
                } else {
                  ++b3;
                }
              } else {
                ++b2;
              }
            } else {
              ++b1;
            }
            word = 0;
            word += b1 << 16;
            word += b2 << 8;
            word += b3;
          } else {
            word += 0x01 << 24;
          }
          return word;
        };
        var incCounter = function incCounter(counter) {
          if ((counter[0] = incWord(counter[0])) === 0) {
            // encr_data in fileenc.c from  Dr Brian Gladman's counts only with DWORD j < 8
            counter[1] = incWord(counter[1]);
          }
          return counter;
        };
        var CTRGladman = CryptoJS.lib.BlockCipherMode.extend();
        var Encryptor = (CTRGladman.Encryptor = CTRGladman.extend({
          processBlock: function processBlock(words, offset) {
            // Shortcuts
            var cipher = this._cipher;
            var blockSize = cipher.blockSize;
            var iv = this._iv;
            var counter = this._counter;
            // Generate keystream
            if (iv) {
              counter = this._counter = iv.slice(0);
              // Remove IV for subsequent blocks
              this._iv = undefined;
            }
            incCounter(counter);
            var keystream = counter.slice(0);
            cipher.encryptBlock(keystream, 0);
            // Encrypt
            for (var i = 0; i < blockSize; i++) {
              words[offset + i] ^= keystream[i];
            }
          },
        }));
        CTRGladman.Decryptor = Encryptor;
        return CTRGladman;
      })();
      return CryptoJS.mode.CTRGladman;
    });
  });

  var modeOfb = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * Output Feedback block mode.
       */ CryptoJS.mode.OFB = (function () {
        var OFB = CryptoJS.lib.BlockCipherMode.extend();
        var Encryptor = (OFB.Encryptor = OFB.extend({
          processBlock: function processBlock(words, offset) {
            // Shortcuts
            var cipher = this._cipher;
            var blockSize = cipher.blockSize;
            var iv = this._iv;
            var keystream = this._keystream;
            // Generate keystream
            if (iv) {
              keystream = this._keystream = iv.slice(0);
              // Remove IV for subsequent blocks
              this._iv = undefined;
            }
            cipher.encryptBlock(keystream, 0);
            // Encrypt
            for (var i = 0; i < blockSize; i++) {
              words[offset + i] ^= keystream[i];
            }
          },
        }));
        OFB.Decryptor = Encryptor;
        return OFB;
      })();
      return CryptoJS.mode.OFB;
    });
  });

  var modeEcb = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * Electronic Codebook block mode.
       */ CryptoJS.mode.ECB = (function () {
        var ECB = CryptoJS.lib.BlockCipherMode.extend();
        ECB.Encryptor = ECB.extend({
          processBlock: function processBlock(words, offset) {
            this._cipher.encryptBlock(words, offset);
          },
        });
        ECB.Decryptor = ECB.extend({
          processBlock: function processBlock(words, offset) {
            this._cipher.decryptBlock(words, offset);
          },
        });
        return ECB;
      })();
      return CryptoJS.mode.ECB;
    });
  });

  var padAnsix923 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * ANSI X.923 padding strategy.
       */ CryptoJS.pad.AnsiX923 = {
        pad: function pad(data, blockSize) {
          // Shortcuts
          var dataSigBytes = data.sigBytes;
          var blockSizeBytes = blockSize * 4;
          // Count padding bytes
          var nPaddingBytes = blockSizeBytes - (dataSigBytes % blockSizeBytes);
          // Compute last byte position
          var lastBytePos = dataSigBytes + nPaddingBytes - 1;
          // Pad
          data.clamp();
          data.words[lastBytePos >>> 2] |= nPaddingBytes << (24 - (lastBytePos % 4) * 8);
          data.sigBytes += nPaddingBytes;
        },
        unpad: function unpad(data) {
          // Get number of padding bytes from last byte
          var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
          // Remove padding
          data.sigBytes -= nPaddingBytes;
        },
      };
      return CryptoJS.pad.Ansix923;
    });
  });

  var padIso10126 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * ISO 10126 padding strategy.
       */ CryptoJS.pad.Iso10126 = {
        pad: function pad(data, blockSize) {
          // Shortcut
          var blockSizeBytes = blockSize * 4;
          // Count padding bytes
          var nPaddingBytes = blockSizeBytes - (data.sigBytes % blockSizeBytes);
          // Pad
          data
            .concat(CryptoJS.lib.WordArray.random(nPaddingBytes - 1))
            .concat(CryptoJS.lib.WordArray.create([nPaddingBytes << 24], 1));
        },
        unpad: function unpad(data) {
          // Get number of padding bytes from last byte
          var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
          // Remove padding
          data.sigBytes -= nPaddingBytes;
        },
      };
      return CryptoJS.pad.Iso10126;
    });
  });

  var padIso97971 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * ISO/IEC 9797-1 Padding Method 2.
       */ CryptoJS.pad.Iso97971 = {
        pad: function pad(data, blockSize) {
          // Add 0x80 byte
          data.concat(CryptoJS.lib.WordArray.create([0x80000000], 1));
          // Zero pad the rest
          CryptoJS.pad.ZeroPadding.pad(data, blockSize);
        },
        unpad: function unpad(data) {
          // Remove zero padding
          CryptoJS.pad.ZeroPadding.unpad(data);
          // Remove one more byte -- the 0x80 byte
          data.sigBytes--;
        },
      };
      return CryptoJS.pad.Iso97971;
    });
  });

  var padZeropadding = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * Zero padding strategy.
       */ CryptoJS.pad.ZeroPadding = {
        pad: function pad(data, blockSize) {
          // Shortcut
          var blockSizeBytes = blockSize * 4;
          // Pad
          data.clamp();
          data.sigBytes += blockSizeBytes - (data.sigBytes % blockSizeBytes || blockSizeBytes);
        },
        unpad: function unpad(data) {
          // Shortcut
          var dataWords = data.words;
          // Unpad
          var i = data.sigBytes - 1;
          for (var i = data.sigBytes - 1; i >= 0; i--) {
            if ((dataWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff) {
              data.sigBytes = i + 1;
              break;
            }
          }
        },
      };
      return CryptoJS.pad.ZeroPadding;
    });
  });

  var padNopadding = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      /**
       * A noop padding strategy.
       */ CryptoJS.pad.NoPadding = {
        pad: function pad() {},
        unpad: function unpad() {},
      };
      return CryptoJS.pad.NoPadding;
    });
  });

  var formatHex = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function (undefined1) {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var CipherParams = C_lib.CipherParams;
        var C_enc = C.enc;
        var Hex = C_enc.Hex;
        var C_format = C.format;
        C_format.Hex = {
          /**
           * Converts the ciphertext of a cipher params object to a hexadecimally encoded string.
           *
           * @param {CipherParams} cipherParams The cipher params object.
           *
           * @return {string} The hexadecimally encoded string.
           *
           * @static
           *
           * @example
           *
           *     var hexString = CryptoJS.format.Hex.stringify(cipherParams);
           */ stringify: function stringify(cipherParams) {
            return cipherParams.ciphertext.toString(Hex);
          },
          /**
           * Converts a hexadecimally encoded ciphertext string to a cipher params object.
           *
           * @param {string} input The hexadecimally encoded string.
           *
           * @return {CipherParams} The cipher params object.
           *
           * @static
           *
           * @example
           *
           *     var cipherParams = CryptoJS.format.Hex.parse(hexString);
           */ parse: function parse(input) {
            var ciphertext = Hex.parse(input);
            return CipherParams.create({
              ciphertext: ciphertext,
            });
          },
        };
      })();
      return CryptoJS.format.Hex;
    });
  });

  var aes = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, encBase64, md5, evpkdf, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var BlockCipher = C_lib.BlockCipher;
        var C_algo = C.algo;
        // Lookup tables
        var SBOX = [];
        var INV_SBOX = [];
        var SUB_MIX_0 = [];
        var SUB_MIX_1 = [];
        var SUB_MIX_2 = [];
        var SUB_MIX_3 = [];
        var INV_SUB_MIX_0 = [];
        var INV_SUB_MIX_1 = [];
        var INV_SUB_MIX_2 = [];
        var INV_SUB_MIX_3 = [];
        // Compute lookup tables
        (function () {
          // Compute double table
          var d = [];
          for (var i = 0; i < 256; i++) {
            if (i < 128) {
              d[i] = i << 1;
            } else {
              d[i] = (i << 1) ^ 0x11b;
            }
          }
          // Walk GF(2^8)
          var x = 0;
          var xi = 0;
          for (var i = 0; i < 256; i++) {
            // Compute sbox
            var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
            sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
            SBOX[x] = sx;
            INV_SBOX[sx] = x;
            // Compute multiplication
            var x2 = d[x];
            var x4 = d[x2];
            var x8 = d[x4];
            // Compute sub bytes, mix columns tables
            var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
            SUB_MIX_0[x] = (t << 24) | (t >>> 8);
            SUB_MIX_1[x] = (t << 16) | (t >>> 16);
            SUB_MIX_2[x] = (t << 8) | (t >>> 24);
            SUB_MIX_3[x] = t;
            // Compute inv sub bytes, inv mix columns tables
            var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
            INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
            INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
            INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
            INV_SUB_MIX_3[sx] = t;
            // Compute next counter
            if (!x) {
              x = xi = 1;
            } else {
              x = x2 ^ d[d[d[x8 ^ x2]]];
              xi ^= d[d[xi]];
            }
          }
        })();
        // Precomputed Rcon lookup
        var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
        /**
         * AES block cipher algorithm.
         */ var AES = (C_algo.AES = BlockCipher.extend({
          _doReset: function _doReset() {
            var t;
            // Skip reset of nRounds has been set before and key did not change
            if (this._nRounds && this._keyPriorReset === this._key) {
              return;
            }
            // Shortcuts
            var key = (this._keyPriorReset = this._key);
            var keyWords = key.words;
            var keySize = key.sigBytes / 4;
            // Compute number of rounds
            var nRounds = (this._nRounds = keySize + 6);
            // Compute number of key schedule rows
            var ksRows = (nRounds + 1) * 4;
            // Compute key schedule
            var keySchedule = (this._keySchedule = []);
            for (var ksRow = 0; ksRow < ksRows; ksRow++) {
              if (ksRow < keySize) {
                keySchedule[ksRow] = keyWords[ksRow];
              } else {
                t = keySchedule[ksRow - 1];
                if (!(ksRow % keySize)) {
                  // Rot word
                  t = (t << 8) | (t >>> 24);
                  // Sub word
                  t =
                    (SBOX[t >>> 24] << 24) |
                    (SBOX[(t >>> 16) & 0xff] << 16) |
                    (SBOX[(t >>> 8) & 0xff] << 8) |
                    SBOX[t & 0xff];
                  // Mix Rcon
                  t ^= RCON[(ksRow / keySize) | 0] << 24;
                } else if (keySize > 6 && ksRow % keySize == 4) {
                  // Sub word
                  t =
                    (SBOX[t >>> 24] << 24) |
                    (SBOX[(t >>> 16) & 0xff] << 16) |
                    (SBOX[(t >>> 8) & 0xff] << 8) |
                    SBOX[t & 0xff];
                }
                keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
              }
            }
            // Compute inv key schedule
            var invKeySchedule = (this._invKeySchedule = []);
            for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
              var ksRow = ksRows - invKsRow;
              if (invKsRow % 4) {
                var t = keySchedule[ksRow];
              } else {
                var t = keySchedule[ksRow - 4];
              }
              if (invKsRow < 4 || ksRow <= 4) {
                invKeySchedule[invKsRow] = t;
              } else {
                invKeySchedule[invKsRow] =
                  INV_SUB_MIX_0[SBOX[t >>> 24]] ^
                  INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
                  INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^
                  INV_SUB_MIX_3[SBOX[t & 0xff]];
              }
            }
          },
          encryptBlock: function encryptBlock(M, offset) {
            this._doCryptBlock(
              M,
              offset,
              this._keySchedule,
              SUB_MIX_0,
              SUB_MIX_1,
              SUB_MIX_2,
              SUB_MIX_3,
              SBOX
            );
          },
          decryptBlock: function decryptBlock(M, offset) {
            // Swap 2nd and 4th rows
            var t = M[offset + 1];
            M[offset + 1] = M[offset + 3];
            M[offset + 3] = t;
            this._doCryptBlock(
              M,
              offset,
              this._invKeySchedule,
              INV_SUB_MIX_0,
              INV_SUB_MIX_1,
              INV_SUB_MIX_2,
              INV_SUB_MIX_3,
              INV_SBOX
            );
            // Inv swap 2nd and 4th rows
            var t = M[offset + 1];
            M[offset + 1] = M[offset + 3];
            M[offset + 3] = t;
          },
          _doCryptBlock: function _doCryptBlock(
            M,
            offset,
            keySchedule,
            SUB_MIX_0,
            SUB_MIX_1,
            SUB_MIX_2,
            SUB_MIX_3,
            SBOX
          ) {
            // Shortcut
            var nRounds = this._nRounds;
            // Get input, add round key
            var s0 = M[offset] ^ keySchedule[0];
            var s1 = M[offset + 1] ^ keySchedule[1];
            var s2 = M[offset + 2] ^ keySchedule[2];
            var s3 = M[offset + 3] ^ keySchedule[3];
            // Key schedule row counter
            var ksRow = 4;
            // Rounds
            for (var round = 1; round < nRounds; round++) {
              // Shift rows, sub bytes, mix columns, add round key
              var t0 =
                SUB_MIX_0[s0 >>> 24] ^
                SUB_MIX_1[(s1 >>> 16) & 0xff] ^
                SUB_MIX_2[(s2 >>> 8) & 0xff] ^
                SUB_MIX_3[s3 & 0xff] ^
                keySchedule[ksRow++];
              var t1 =
                SUB_MIX_0[s1 >>> 24] ^
                SUB_MIX_1[(s2 >>> 16) & 0xff] ^
                SUB_MIX_2[(s3 >>> 8) & 0xff] ^
                SUB_MIX_3[s0 & 0xff] ^
                keySchedule[ksRow++];
              var t2 =
                SUB_MIX_0[s2 >>> 24] ^
                SUB_MIX_1[(s3 >>> 16) & 0xff] ^
                SUB_MIX_2[(s0 >>> 8) & 0xff] ^
                SUB_MIX_3[s1 & 0xff] ^
                keySchedule[ksRow++];
              var t3 =
                SUB_MIX_0[s3 >>> 24] ^
                SUB_MIX_1[(s0 >>> 16) & 0xff] ^
                SUB_MIX_2[(s1 >>> 8) & 0xff] ^
                SUB_MIX_3[s2 & 0xff] ^
                keySchedule[ksRow++];
              // Update state
              s0 = t0;
              s1 = t1;
              s2 = t2;
              s3 = t3;
            }
            // Shift rows, sub bytes, add round key
            var t0 =
              ((SBOX[s0 >>> 24] << 24) |
                (SBOX[(s1 >>> 16) & 0xff] << 16) |
                (SBOX[(s2 >>> 8) & 0xff] << 8) |
                SBOX[s3 & 0xff]) ^
              keySchedule[ksRow++];
            var t1 =
              ((SBOX[s1 >>> 24] << 24) |
                (SBOX[(s2 >>> 16) & 0xff] << 16) |
                (SBOX[(s3 >>> 8) & 0xff] << 8) |
                SBOX[s0 & 0xff]) ^
              keySchedule[ksRow++];
            var t2 =
              ((SBOX[s2 >>> 24] << 24) |
                (SBOX[(s3 >>> 16) & 0xff] << 16) |
                (SBOX[(s0 >>> 8) & 0xff] << 8) |
                SBOX[s1 & 0xff]) ^
              keySchedule[ksRow++];
            var t3 =
              ((SBOX[s3 >>> 24] << 24) |
                (SBOX[(s0 >>> 16) & 0xff] << 16) |
                (SBOX[(s1 >>> 8) & 0xff] << 8) |
                SBOX[s2 & 0xff]) ^
              keySchedule[ksRow++];
            // Set output
            M[offset] = t0;
            M[offset + 1] = t1;
            M[offset + 2] = t2;
            M[offset + 3] = t3;
          },
          keySize: 256 / 32,
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.AES.decrypt(ciphertext, key, cfg);
         */ C.AES = BlockCipher._createHelper(AES);
      })();
      return CryptoJS.AES;
    });
  });

  var tripledes = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, encBase64, md5, evpkdf, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var exchangeLR = // Swap bits across the left and right words
          function exchangeLR(offset, mask) {
            var t = ((this._lBlock >>> offset) ^ this._rBlock) & mask;
            this._rBlock ^= t;
            this._lBlock ^= t << offset;
          };
        var exchangeRL = function exchangeRL(offset, mask) {
          var t = ((this._rBlock >>> offset) ^ this._lBlock) & mask;
          this._lBlock ^= t;
          this._rBlock ^= t << offset;
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var BlockCipher = C_lib.BlockCipher;
        var C_algo = C.algo;
        // Permuted Choice 1 constants
        var PC1 = [
          57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11,
          3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53,
          45, 37, 29, 21, 13, 5, 28, 20, 12, 4,
        ];
        // Permuted Choice 2 constants
        var PC2 = [
          14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
          41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36,
          29, 32,
        ];
        // Cumulative bit shift constants
        var BIT_SHIFTS = [1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28];
        // SBOXes and round permutation constants
        var SBOX_P = [
          {
            0x0: 0x808200,
            0x10000000: 0x8000,
            0x20000000: 0x808002,
            0x30000000: 0x2,
            0x40000000: 0x200,
            0x50000000: 0x808202,
            0x60000000: 0x800202,
            0x70000000: 0x800000,
            0x80000000: 0x202,
            0x90000000: 0x800200,
            0xa0000000: 0x8200,
            0xb0000000: 0x808000,
            0xc0000000: 0x8002,
            0xd0000000: 0x800002,
            0xe0000000: 0x0,
            0xf0000000: 0x8202,
            0x8000000: 0x0,
            0x18000000: 0x808202,
            0x28000000: 0x8202,
            0x38000000: 0x8000,
            0x48000000: 0x808200,
            0x58000000: 0x200,
            0x68000000: 0x808002,
            0x78000000: 0x2,
            0x88000000: 0x800200,
            0x98000000: 0x8200,
            0xa8000000: 0x808000,
            0xb8000000: 0x800202,
            0xc8000000: 0x800002,
            0xd8000000: 0x8002,
            0xe8000000: 0x202,
            0xf8000000: 0x800000,
            0x1: 0x8000,
            0x10000001: 0x2,
            0x20000001: 0x808200,
            0x30000001: 0x800000,
            0x40000001: 0x808002,
            0x50000001: 0x8200,
            0x60000001: 0x200,
            0x70000001: 0x800202,
            0x80000001: 0x808202,
            0x90000001: 0x808000,
            0xa0000001: 0x800002,
            0xb0000001: 0x8202,
            0xc0000001: 0x202,
            0xd0000001: 0x800200,
            0xe0000001: 0x8002,
            0xf0000001: 0x0,
            0x8000001: 0x808202,
            0x18000001: 0x808000,
            0x28000001: 0x800000,
            0x38000001: 0x200,
            0x48000001: 0x8000,
            0x58000001: 0x800002,
            0x68000001: 0x2,
            0x78000001: 0x8202,
            0x88000001: 0x8002,
            0x98000001: 0x800202,
            0xa8000001: 0x202,
            0xb8000001: 0x808200,
            0xc8000001: 0x800200,
            0xd8000001: 0x0,
            0xe8000001: 0x8200,
            0xf8000001: 0x808002,
          },
          {
            0x0: 0x40084010,
            0x1000000: 0x4000,
            0x2000000: 0x80000,
            0x3000000: 0x40080010,
            0x4000000: 0x40000010,
            0x5000000: 0x40084000,
            0x6000000: 0x40004000,
            0x7000000: 0x10,
            0x8000000: 0x84000,
            0x9000000: 0x40004010,
            0xa000000: 0x40000000,
            0xb000000: 0x84010,
            0xc000000: 0x80010,
            0xd000000: 0x0,
            0xe000000: 0x4010,
            0xf000000: 0x40080000,
            0x800000: 0x40004000,
            0x1800000: 0x84010,
            0x2800000: 0x10,
            0x3800000: 0x40004010,
            0x4800000: 0x40084010,
            0x5800000: 0x40000000,
            0x6800000: 0x80000,
            0x7800000: 0x40080010,
            0x8800000: 0x80010,
            0x9800000: 0x0,
            0xa800000: 0x4000,
            0xb800000: 0x40080000,
            0xc800000: 0x40000010,
            0xd800000: 0x84000,
            0xe800000: 0x40084000,
            0xf800000: 0x4010,
            0x10000000: 0x0,
            0x11000000: 0x40080010,
            0x12000000: 0x40004010,
            0x13000000: 0x40084000,
            0x14000000: 0x40080000,
            0x15000000: 0x10,
            0x16000000: 0x84010,
            0x17000000: 0x4000,
            0x18000000: 0x4010,
            0x19000000: 0x80000,
            0x1a000000: 0x80010,
            0x1b000000: 0x40000010,
            0x1c000000: 0x84000,
            0x1d000000: 0x40004000,
            0x1e000000: 0x40000000,
            0x1f000000: 0x40084010,
            0x10800000: 0x84010,
            0x11800000: 0x80000,
            0x12800000: 0x40080000,
            0x13800000: 0x4000,
            0x14800000: 0x40004000,
            0x15800000: 0x40084010,
            0x16800000: 0x10,
            0x17800000: 0x40000000,
            0x18800000: 0x40084000,
            0x19800000: 0x40000010,
            0x1a800000: 0x40004010,
            0x1b800000: 0x80010,
            0x1c800000: 0x0,
            0x1d800000: 0x4010,
            0x1e800000: 0x40080010,
            0x1f800000: 0x84000,
          },
          {
            0x0: 0x104,
            0x100000: 0x0,
            0x200000: 0x4000100,
            0x300000: 0x10104,
            0x400000: 0x10004,
            0x500000: 0x4000004,
            0x600000: 0x4010104,
            0x700000: 0x4010000,
            0x800000: 0x4000000,
            0x900000: 0x4010100,
            0xa00000: 0x10100,
            0xb00000: 0x4010004,
            0xc00000: 0x4000104,
            0xd00000: 0x10000,
            0xe00000: 0x4,
            0xf00000: 0x100,
            0x80000: 0x4010100,
            0x180000: 0x4010004,
            0x280000: 0x0,
            0x380000: 0x4000100,
            0x480000: 0x4000004,
            0x580000: 0x10000,
            0x680000: 0x10004,
            0x780000: 0x104,
            0x880000: 0x4,
            0x980000: 0x100,
            0xa80000: 0x4010000,
            0xb80000: 0x10104,
            0xc80000: 0x10100,
            0xd80000: 0x4000104,
            0xe80000: 0x4010104,
            0xf80000: 0x4000000,
            0x1000000: 0x4010100,
            0x1100000: 0x10004,
            0x1200000: 0x10000,
            0x1300000: 0x4000100,
            0x1400000: 0x100,
            0x1500000: 0x4010104,
            0x1600000: 0x4000004,
            0x1700000: 0x0,
            0x1800000: 0x4000104,
            0x1900000: 0x4000000,
            0x1a00000: 0x4,
            0x1b00000: 0x10100,
            0x1c00000: 0x4010000,
            0x1d00000: 0x104,
            0x1e00000: 0x10104,
            0x1f00000: 0x4010004,
            0x1080000: 0x4000000,
            0x1180000: 0x104,
            0x1280000: 0x4010100,
            0x1380000: 0x0,
            0x1480000: 0x10004,
            0x1580000: 0x4000100,
            0x1680000: 0x100,
            0x1780000: 0x4010004,
            0x1880000: 0x10000,
            0x1980000: 0x4010104,
            0x1a80000: 0x10104,
            0x1b80000: 0x4000004,
            0x1c80000: 0x4000104,
            0x1d80000: 0x4010000,
            0x1e80000: 0x4,
            0x1f80000: 0x10100,
          },
          {
            0x0: 0x80401000,
            0x10000: 0x80001040,
            0x20000: 0x401040,
            0x30000: 0x80400000,
            0x40000: 0x0,
            0x50000: 0x401000,
            0x60000: 0x80000040,
            0x70000: 0x400040,
            0x80000: 0x80000000,
            0x90000: 0x400000,
            0xa0000: 0x40,
            0xb0000: 0x80001000,
            0xc0000: 0x80400040,
            0xd0000: 0x1040,
            0xe0000: 0x1000,
            0xf0000: 0x80401040,
            0x8000: 0x80001040,
            0x18000: 0x40,
            0x28000: 0x80400040,
            0x38000: 0x80001000,
            0x48000: 0x401000,
            0x58000: 0x80401040,
            0x68000: 0x0,
            0x78000: 0x80400000,
            0x88000: 0x1000,
            0x98000: 0x80401000,
            0xa8000: 0x400000,
            0xb8000: 0x1040,
            0xc8000: 0x80000000,
            0xd8000: 0x400040,
            0xe8000: 0x401040,
            0xf8000: 0x80000040,
            0x100000: 0x400040,
            0x110000: 0x401000,
            0x120000: 0x80000040,
            0x130000: 0x0,
            0x140000: 0x1040,
            0x150000: 0x80400040,
            0x160000: 0x80401000,
            0x170000: 0x80001040,
            0x180000: 0x80401040,
            0x190000: 0x80000000,
            0x1a0000: 0x80400000,
            0x1b0000: 0x401040,
            0x1c0000: 0x80001000,
            0x1d0000: 0x400000,
            0x1e0000: 0x40,
            0x1f0000: 0x1000,
            0x108000: 0x80400000,
            0x118000: 0x80401040,
            0x128000: 0x0,
            0x138000: 0x401000,
            0x148000: 0x400040,
            0x158000: 0x80000000,
            0x168000: 0x80001040,
            0x178000: 0x40,
            0x188000: 0x80000040,
            0x198000: 0x1000,
            0x1a8000: 0x80001000,
            0x1b8000: 0x80400040,
            0x1c8000: 0x1040,
            0x1d8000: 0x80401000,
            0x1e8000: 0x400000,
            0x1f8000: 0x401040,
          },
          {
            0x0: 0x80,
            0x1000: 0x1040000,
            0x2000: 0x40000,
            0x3000: 0x20000000,
            0x4000: 0x20040080,
            0x5000: 0x1000080,
            0x6000: 0x21000080,
            0x7000: 0x40080,
            0x8000: 0x1000000,
            0x9000: 0x20040000,
            0xa000: 0x20000080,
            0xb000: 0x21040080,
            0xc000: 0x21040000,
            0xd000: 0x0,
            0xe000: 0x1040080,
            0xf000: 0x21000000,
            0x800: 0x1040080,
            0x1800: 0x21000080,
            0x2800: 0x80,
            0x3800: 0x1040000,
            0x4800: 0x40000,
            0x5800: 0x20040080,
            0x6800: 0x21040000,
            0x7800: 0x20000000,
            0x8800: 0x20040000,
            0x9800: 0x0,
            0xa800: 0x21040080,
            0xb800: 0x1000080,
            0xc800: 0x20000080,
            0xd800: 0x21000000,
            0xe800: 0x1000000,
            0xf800: 0x40080,
            0x10000: 0x40000,
            0x11000: 0x80,
            0x12000: 0x20000000,
            0x13000: 0x21000080,
            0x14000: 0x1000080,
            0x15000: 0x21040000,
            0x16000: 0x20040080,
            0x17000: 0x1000000,
            0x18000: 0x21040080,
            0x19000: 0x21000000,
            0x1a000: 0x1040000,
            0x1b000: 0x20040000,
            0x1c000: 0x40080,
            0x1d000: 0x20000080,
            0x1e000: 0x0,
            0x1f000: 0x1040080,
            0x10800: 0x21000080,
            0x11800: 0x1000000,
            0x12800: 0x1040000,
            0x13800: 0x20040080,
            0x14800: 0x20000000,
            0x15800: 0x1040080,
            0x16800: 0x80,
            0x17800: 0x21040000,
            0x18800: 0x40080,
            0x19800: 0x21040080,
            0x1a800: 0x0,
            0x1b800: 0x21000000,
            0x1c800: 0x1000080,
            0x1d800: 0x40000,
            0x1e800: 0x20040000,
            0x1f800: 0x20000080,
          },
          {
            0x0: 0x10000008,
            0x100: 0x2000,
            0x200: 0x10200000,
            0x300: 0x10202008,
            0x400: 0x10002000,
            0x500: 0x200000,
            0x600: 0x200008,
            0x700: 0x10000000,
            0x800: 0x0,
            0x900: 0x10002008,
            0xa00: 0x202000,
            0xb00: 0x8,
            0xc00: 0x10200008,
            0xd00: 0x202008,
            0xe00: 0x2008,
            0xf00: 0x10202000,
            0x80: 0x10200000,
            0x180: 0x10202008,
            0x280: 0x8,
            0x380: 0x200000,
            0x480: 0x202008,
            0x580: 0x10000008,
            0x680: 0x10002000,
            0x780: 0x2008,
            0x880: 0x200008,
            0x980: 0x2000,
            0xa80: 0x10002008,
            0xb80: 0x10200008,
            0xc80: 0x0,
            0xd80: 0x10202000,
            0xe80: 0x202000,
            0xf80: 0x10000000,
            0x1000: 0x10002000,
            0x1100: 0x10200008,
            0x1200: 0x10202008,
            0x1300: 0x2008,
            0x1400: 0x200000,
            0x1500: 0x10000000,
            0x1600: 0x10000008,
            0x1700: 0x202000,
            0x1800: 0x202008,
            0x1900: 0x0,
            0x1a00: 0x8,
            0x1b00: 0x10200000,
            0x1c00: 0x2000,
            0x1d00: 0x10002008,
            0x1e00: 0x10202000,
            0x1f00: 0x200008,
            0x1080: 0x8,
            0x1180: 0x202000,
            0x1280: 0x200000,
            0x1380: 0x10000008,
            0x1480: 0x10002000,
            0x1580: 0x2008,
            0x1680: 0x10202008,
            0x1780: 0x10200000,
            0x1880: 0x10202000,
            0x1980: 0x10200008,
            0x1a80: 0x2000,
            0x1b80: 0x202008,
            0x1c80: 0x200008,
            0x1d80: 0x0,
            0x1e80: 0x10000000,
            0x1f80: 0x10002008,
          },
          {
            0x0: 0x100000,
            0x10: 0x2000401,
            0x20: 0x400,
            0x30: 0x100401,
            0x40: 0x2100401,
            0x50: 0x0,
            0x60: 0x1,
            0x70: 0x2100001,
            0x80: 0x2000400,
            0x90: 0x100001,
            0xa0: 0x2000001,
            0xb0: 0x2100400,
            0xc0: 0x2100000,
            0xd0: 0x401,
            0xe0: 0x100400,
            0xf0: 0x2000000,
            0x8: 0x2100001,
            0x18: 0x0,
            0x28: 0x2000401,
            0x38: 0x2100400,
            0x48: 0x100000,
            0x58: 0x2000001,
            0x68: 0x2000000,
            0x78: 0x401,
            0x88: 0x100401,
            0x98: 0x2000400,
            0xa8: 0x2100000,
            0xb8: 0x100001,
            0xc8: 0x400,
            0xd8: 0x2100401,
            0xe8: 0x1,
            0xf8: 0x100400,
            0x100: 0x2000000,
            0x110: 0x100000,
            0x120: 0x2000401,
            0x130: 0x2100001,
            0x140: 0x100001,
            0x150: 0x2000400,
            0x160: 0x2100400,
            0x170: 0x100401,
            0x180: 0x401,
            0x190: 0x2100401,
            0x1a0: 0x100400,
            0x1b0: 0x1,
            0x1c0: 0x0,
            0x1d0: 0x2100000,
            0x1e0: 0x2000001,
            0x1f0: 0x400,
            0x108: 0x100400,
            0x118: 0x2000401,
            0x128: 0x2100001,
            0x138: 0x1,
            0x148: 0x2000000,
            0x158: 0x100000,
            0x168: 0x401,
            0x178: 0x2100400,
            0x188: 0x2000001,
            0x198: 0x2100000,
            0x1a8: 0x0,
            0x1b8: 0x2100401,
            0x1c8: 0x100401,
            0x1d8: 0x400,
            0x1e8: 0x2000400,
            0x1f8: 0x100001,
          },
          {
            0x0: 0x8000820,
            0x1: 0x20000,
            0x2: 0x8000000,
            0x3: 0x20,
            0x4: 0x20020,
            0x5: 0x8020820,
            0x6: 0x8020800,
            0x7: 0x800,
            0x8: 0x8020000,
            0x9: 0x8000800,
            0xa: 0x20800,
            0xb: 0x8020020,
            0xc: 0x820,
            0xd: 0x0,
            0xe: 0x8000020,
            0xf: 0x20820,
            0x80000000: 0x800,
            0x80000001: 0x8020820,
            0x80000002: 0x8000820,
            0x80000003: 0x8000000,
            0x80000004: 0x8020000,
            0x80000005: 0x20800,
            0x80000006: 0x20820,
            0x80000007: 0x20,
            0x80000008: 0x8000020,
            0x80000009: 0x820,
            0x8000000a: 0x20020,
            0x8000000b: 0x8020800,
            0x8000000c: 0x0,
            0x8000000d: 0x8020020,
            0x8000000e: 0x8000800,
            0x8000000f: 0x20000,
            0x10: 0x20820,
            0x11: 0x8020800,
            0x12: 0x20,
            0x13: 0x800,
            0x14: 0x8000800,
            0x15: 0x8000020,
            0x16: 0x8020020,
            0x17: 0x20000,
            0x18: 0x0,
            0x19: 0x20020,
            0x1a: 0x8020000,
            0x1b: 0x8000820,
            0x1c: 0x8020820,
            0x1d: 0x20800,
            0x1e: 0x820,
            0x1f: 0x8000000,
            0x80000010: 0x20000,
            0x80000011: 0x800,
            0x80000012: 0x8020020,
            0x80000013: 0x20820,
            0x80000014: 0x20,
            0x80000015: 0x8020000,
            0x80000016: 0x8000000,
            0x80000017: 0x8000820,
            0x80000018: 0x8020820,
            0x80000019: 0x8000020,
            0x8000001a: 0x8000800,
            0x8000001b: 0x0,
            0x8000001c: 0x20800,
            0x8000001d: 0x820,
            0x8000001e: 0x20020,
            0x8000001f: 0x8020800,
          },
        ];
        // Masks that select the SBOX input
        var SBOX_MASK = [
          0xf8000001, 0x1f800000, 0x01f80000, 0x001f8000, 0x0001f800, 0x00001f80, 0x000001f8,
          0x8000001f,
        ];
        /**
         * DES block cipher algorithm.
         */ var DES = (C_algo.DES = BlockCipher.extend({
          _doReset: function _doReset() {
            // Shortcuts
            var key = this._key;
            var keyWords = key.words;
            // Select 56 bits according to PC1
            var keyBits = [];
            for (var i = 0; i < 56; i++) {
              var keyBitPos = PC1[i] - 1;
              keyBits[i] = (keyWords[keyBitPos >>> 5] >>> (31 - (keyBitPos % 32))) & 1;
            }
            // Assemble 16 subkeys
            var subKeys = (this._subKeys = []);
            for (var nSubKey = 0; nSubKey < 16; nSubKey++) {
              // Create subkey
              var subKey = (subKeys[nSubKey] = []);
              // Shortcut
              var bitShift = BIT_SHIFTS[nSubKey];
              // Select 48 bits according to PC2
              for (var i = 0; i < 24; i++) {
                // Select from the left 28 key bits
                subKey[(i / 6) | 0] |= keyBits[(PC2[i] - 1 + bitShift) % 28] << (31 - (i % 6));
                // Select from the right 28 key bits
                subKey[4 + ((i / 6) | 0)] |=
                  keyBits[28 + ((PC2[i + 24] - 1 + bitShift) % 28)] << (31 - (i % 6));
              }
              // Since each subkey is applied to an expanded 32-bit input,
              // the subkey can be broken into 8 values scaled to 32-bits,
              // which allows the key to be used without expansion
              subKey[0] = (subKey[0] << 1) | (subKey[0] >>> 31);
              for (var i = 1; i < 7; i++) {
                subKey[i] = subKey[i] >>> ((i - 1) * 4 + 3);
              }
              subKey[7] = (subKey[7] << 5) | (subKey[7] >>> 27);
            }
            // Compute inverse subkeys
            var invSubKeys = (this._invSubKeys = []);
            for (var i = 0; i < 16; i++) {
              invSubKeys[i] = subKeys[15 - i];
            }
          },
          encryptBlock: function encryptBlock(M, offset) {
            this._doCryptBlock(M, offset, this._subKeys);
          },
          decryptBlock: function decryptBlock(M, offset) {
            this._doCryptBlock(M, offset, this._invSubKeys);
          },
          _doCryptBlock: function _doCryptBlock(M, offset, subKeys) {
            // Get input
            this._lBlock = M[offset];
            this._rBlock = M[offset + 1];
            // Initial permutation
            exchangeLR.call(this, 4, 0x0f0f0f0f);
            exchangeLR.call(this, 16, 0x0000ffff);
            exchangeRL.call(this, 2, 0x33333333);
            exchangeRL.call(this, 8, 0x00ff00ff);
            exchangeLR.call(this, 1, 0x55555555);
            // Rounds
            for (var round = 0; round < 16; round++) {
              // Shortcuts
              var subKey = subKeys[round];
              var lBlock = this._lBlock;
              var rBlock = this._rBlock;
              // Feistel function
              var f = 0;
              for (var i = 0; i < 8; i++) {
                f |= SBOX_P[i][((rBlock ^ subKey[i]) & SBOX_MASK[i]) >>> 0];
              }
              this._lBlock = rBlock;
              this._rBlock = lBlock ^ f;
            }
            // Undo swap from last round
            var t = this._lBlock;
            this._lBlock = this._rBlock;
            this._rBlock = t;
            // Final permutation
            exchangeLR.call(this, 1, 0x55555555);
            exchangeRL.call(this, 8, 0x00ff00ff);
            exchangeRL.call(this, 2, 0x33333333);
            exchangeLR.call(this, 16, 0x0000ffff);
            exchangeLR.call(this, 4, 0x0f0f0f0f);
            // Set output
            M[offset] = this._lBlock;
            M[offset + 1] = this._rBlock;
          },
          keySize: 64 / 32,
          ivSize: 64 / 32,
          blockSize: 64 / 32,
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.DES.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.DES.decrypt(ciphertext, key, cfg);
         */ C.DES = BlockCipher._createHelper(DES);
        /**
         * Triple-DES block cipher algorithm.
         */ var TripleDES = (C_algo.TripleDES = BlockCipher.extend({
          _doReset: function _doReset() {
            // Shortcuts
            var key = this._key;
            var keyWords = key.words;
            // Make sure the key length is valid (64, 128 or >= 192 bit)
            if (keyWords.length !== 2 && keyWords.length !== 4 && keyWords.length < 6) {
              throw new Error(
                "Invalid key length - 3DES requires the key length to be 64, 128, 192 or >192."
              );
            }
            // Extend the key according to the keying options defined in 3DES standard
            var key1 = keyWords.slice(0, 2);
            var key2 = keyWords.length < 4 ? keyWords.slice(0, 2) : keyWords.slice(2, 4);
            var key3 = keyWords.length < 6 ? keyWords.slice(0, 2) : keyWords.slice(4, 6);
            // Create DES instances
            this._des1 = DES.createEncryptor(WordArray.create(key1));
            this._des2 = DES.createEncryptor(WordArray.create(key2));
            this._des3 = DES.createEncryptor(WordArray.create(key3));
          },
          encryptBlock: function encryptBlock(M, offset) {
            this._des1.encryptBlock(M, offset);
            this._des2.decryptBlock(M, offset);
            this._des3.encryptBlock(M, offset);
          },
          decryptBlock: function decryptBlock(M, offset) {
            this._des3.decryptBlock(M, offset);
            this._des2.encryptBlock(M, offset);
            this._des1.decryptBlock(M, offset);
          },
          keySize: 192 / 32,
          ivSize: 64 / 32,
          blockSize: 64 / 32,
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.TripleDES.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.TripleDES.decrypt(ciphertext, key, cfg);
         */ C.TripleDES = BlockCipher._createHelper(TripleDES);
      })();
      return CryptoJS.TripleDES;
    });
  });

  var rc4 = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, encBase64, md5, evpkdf, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var generateKeystreamWord = function generateKeystreamWord() {
          // Shortcuts
          var S = this._S;
          var i = this._i;
          var j = this._j;
          // Generate keystream word
          var keystreamWord = 0;
          for (var n = 0; n < 4; n++) {
            i = (i + 1) % 256;
            j = (j + S[i]) % 256;
            // Swap
            var t = S[i];
            S[i] = S[j];
            S[j] = t;
            keystreamWord |= S[(S[i] + S[j]) % 256] << (24 - n * 8);
          }
          // Update counters
          this._i = i;
          this._j = j;
          return keystreamWord;
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var StreamCipher = C_lib.StreamCipher;
        var C_algo = C.algo;
        /**
         * RC4 stream cipher algorithm.
         */ var RC4 = (C_algo.RC4 = StreamCipher.extend({
          _doReset: function _doReset() {
            // Shortcuts
            var key = this._key;
            var keyWords = key.words;
            var keySigBytes = key.sigBytes;
            // Init sbox
            var S = (this._S = []);
            for (var i = 0; i < 256; i++) {
              S[i] = i;
            }
            // Key setup
            for (var i = 0, j = 0; i < 256; i++) {
              var keyByteIndex = i % keySigBytes;
              var keyByte = (keyWords[keyByteIndex >>> 2] >>> (24 - (keyByteIndex % 4) * 8)) & 0xff;
              j = (j + S[i] + keyByte) % 256;
              // Swap
              var t = S[i];
              S[i] = S[j];
              S[j] = t;
            }
            // Counters
            this._i = this._j = 0;
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            M[offset] ^= generateKeystreamWord.call(this);
          },
          keySize: 256 / 32,
          ivSize: 0,
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.RC4.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.RC4.decrypt(ciphertext, key, cfg);
         */ C.RC4 = StreamCipher._createHelper(RC4);
        /**
         * Modified RC4 stream cipher algorithm.
         */ var RC4Drop = (C_algo.RC4Drop = RC4.extend({
          /**
           * Configuration options.
           *
           * @property {number} drop The number of keystream words to drop. Default 192
           */ cfg: RC4.cfg.extend({
            drop: 192,
          }),
          _doReset: function _doReset() {
            RC4._doReset.call(this);
            // Drop
            for (var i = this.cfg.drop; i > 0; i--) {
              generateKeystreamWord.call(this);
            }
          },
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.RC4Drop.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.RC4Drop.decrypt(ciphertext, key, cfg);
         */ C.RC4Drop = StreamCipher._createHelper(RC4Drop);
      })();
      return CryptoJS.RC4;
    });
  });

  var rabbit = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, encBase64, md5, evpkdf, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var nextState = function nextState() {
          // Shortcuts
          var X = this._X;
          var C = this._C;
          // Save old counter values
          for (var i = 0; i < 8; i++) {
            C_[i] = C[i];
          }
          // Calculate new counter values
          C[0] = (C[0] + 0x4d34d34d + this._b) | 0;
          C[1] = (C[1] + 0xd34d34d3 + (C[0] >>> 0 < C_[0] >>> 0 ? 1 : 0)) | 0;
          C[2] = (C[2] + 0x34d34d34 + (C[1] >>> 0 < C_[1] >>> 0 ? 1 : 0)) | 0;
          C[3] = (C[3] + 0x4d34d34d + (C[2] >>> 0 < C_[2] >>> 0 ? 1 : 0)) | 0;
          C[4] = (C[4] + 0xd34d34d3 + (C[3] >>> 0 < C_[3] >>> 0 ? 1 : 0)) | 0;
          C[5] = (C[5] + 0x34d34d34 + (C[4] >>> 0 < C_[4] >>> 0 ? 1 : 0)) | 0;
          C[6] = (C[6] + 0x4d34d34d + (C[5] >>> 0 < C_[5] >>> 0 ? 1 : 0)) | 0;
          C[7] = (C[7] + 0xd34d34d3 + (C[6] >>> 0 < C_[6] >>> 0 ? 1 : 0)) | 0;
          this._b = C[7] >>> 0 < C_[7] >>> 0 ? 1 : 0;
          // Calculate the g-values
          for (var i = 0; i < 8; i++) {
            var gx = X[i] + C[i];
            // Construct high and low argument for squaring
            var ga = gx & 0xffff;
            var gb = gx >>> 16;
            // Calculate high and low result of squaring
            var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;
            var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);
            // High XOR low
            G[i] = gh ^ gl;
          }
          // Calculate new state values
          X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;
          X[1] = (G[1] + ((G[0] << 8) | (G[0] >>> 24)) + G[7]) | 0;
          X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;
          X[3] = (G[3] + ((G[2] << 8) | (G[2] >>> 24)) + G[1]) | 0;
          X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;
          X[5] = (G[5] + ((G[4] << 8) | (G[4] >>> 24)) + G[3]) | 0;
          X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;
          X[7] = (G[7] + ((G[6] << 8) | (G[6] >>> 24)) + G[5]) | 0;
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var StreamCipher = C_lib.StreamCipher;
        var C_algo = C.algo;
        // Reusable objects
        var S = [];
        var C_ = [];
        var G = [];
        /**
         * Rabbit stream cipher algorithm
         */ var Rabbit = (C_algo.Rabbit = StreamCipher.extend({
          _doReset: function _doReset() {
            // Shortcuts
            var K = this._key.words;
            var iv = this.cfg.iv;
            // Swap endian
            for (var i = 0; i < 4; i++) {
              K[i] =
                (((K[i] << 8) | (K[i] >>> 24)) & 0x00ff00ff) |
                (((K[i] << 24) | (K[i] >>> 8)) & 0xff00ff00);
            }
            // Generate initial state values
            var X = (this._X = [
              K[0],
              (K[3] << 16) | (K[2] >>> 16),
              K[1],
              (K[0] << 16) | (K[3] >>> 16),
              K[2],
              (K[1] << 16) | (K[0] >>> 16),
              K[3],
              (K[2] << 16) | (K[1] >>> 16),
            ]);
            // Generate initial counter values
            var C = (this._C = [
              (K[2] << 16) | (K[2] >>> 16),
              (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),
              (K[3] << 16) | (K[3] >>> 16),
              (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),
              (K[0] << 16) | (K[0] >>> 16),
              (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),
              (K[1] << 16) | (K[1] >>> 16),
              (K[3] & 0xffff0000) | (K[0] & 0x0000ffff),
            ]);
            // Carry bit
            this._b = 0;
            // Iterate the system four times
            for (var i = 0; i < 4; i++) {
              nextState.call(this);
            }
            // Modify the counters
            for (var i = 0; i < 8; i++) {
              C[i] ^= X[(i + 4) & 7];
            }
            // IV setup
            if (iv) {
              // Shortcuts
              var IV = iv.words;
              var IV_0 = IV[0];
              var IV_1 = IV[1];
              // Generate four subvectors
              var i0 =
                (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) |
                (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);
              var i2 =
                (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) |
                (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);
              var i1 = (i0 >>> 16) | (i2 & 0xffff0000);
              var i3 = (i2 << 16) | (i0 & 0x0000ffff);
              // Modify counter values
              C[0] ^= i0;
              C[1] ^= i1;
              C[2] ^= i2;
              C[3] ^= i3;
              C[4] ^= i0;
              C[5] ^= i1;
              C[6] ^= i2;
              C[7] ^= i3;
              // Iterate the system four times
              for (var i = 0; i < 4; i++) {
                nextState.call(this);
              }
            }
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Shortcut
            var X = this._X;
            // Iterate the system
            nextState.call(this);
            // Generate four keystream words
            S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);
            S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);
            S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);
            S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);
            for (var i = 0; i < 4; i++) {
              // Swap endian
              S[i] =
                (((S[i] << 8) | (S[i] >>> 24)) & 0x00ff00ff) |
                (((S[i] << 24) | (S[i] >>> 8)) & 0xff00ff00);
              // Encrypt
              M[offset + i] ^= S[i];
            }
          },
          blockSize: 128 / 32,
          ivSize: 64 / 32,
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.Rabbit.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.Rabbit.decrypt(ciphertext, key, cfg);
         */ C.Rabbit = StreamCipher._createHelper(Rabbit);
      })();
      return CryptoJS.Rabbit;
    });
  });

  var rabbitLegacy = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(core, encBase64, md5, evpkdf, cipherCore);
      }
    })(commonjsGlobal, function (CryptoJS) {
      (function () {
        var nextState = function nextState() {
          // Shortcuts
          var X = this._X;
          var C = this._C;
          // Save old counter values
          for (var i = 0; i < 8; i++) {
            C_[i] = C[i];
          }
          // Calculate new counter values
          C[0] = (C[0] + 0x4d34d34d + this._b) | 0;
          C[1] = (C[1] + 0xd34d34d3 + (C[0] >>> 0 < C_[0] >>> 0 ? 1 : 0)) | 0;
          C[2] = (C[2] + 0x34d34d34 + (C[1] >>> 0 < C_[1] >>> 0 ? 1 : 0)) | 0;
          C[3] = (C[3] + 0x4d34d34d + (C[2] >>> 0 < C_[2] >>> 0 ? 1 : 0)) | 0;
          C[4] = (C[4] + 0xd34d34d3 + (C[3] >>> 0 < C_[3] >>> 0 ? 1 : 0)) | 0;
          C[5] = (C[5] + 0x34d34d34 + (C[4] >>> 0 < C_[4] >>> 0 ? 1 : 0)) | 0;
          C[6] = (C[6] + 0x4d34d34d + (C[5] >>> 0 < C_[5] >>> 0 ? 1 : 0)) | 0;
          C[7] = (C[7] + 0xd34d34d3 + (C[6] >>> 0 < C_[6] >>> 0 ? 1 : 0)) | 0;
          this._b = C[7] >>> 0 < C_[7] >>> 0 ? 1 : 0;
          // Calculate the g-values
          for (var i = 0; i < 8; i++) {
            var gx = X[i] + C[i];
            // Construct high and low argument for squaring
            var ga = gx & 0xffff;
            var gb = gx >>> 16;
            // Calculate high and low result of squaring
            var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;
            var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);
            // High XOR low
            G[i] = gh ^ gl;
          }
          // Calculate new state values
          X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;
          X[1] = (G[1] + ((G[0] << 8) | (G[0] >>> 24)) + G[7]) | 0;
          X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;
          X[3] = (G[3] + ((G[2] << 8) | (G[2] >>> 24)) + G[1]) | 0;
          X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;
          X[5] = (G[5] + ((G[4] << 8) | (G[4] >>> 24)) + G[3]) | 0;
          X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;
          X[7] = (G[7] + ((G[6] << 8) | (G[6] >>> 24)) + G[5]) | 0;
        };
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var StreamCipher = C_lib.StreamCipher;
        var C_algo = C.algo;
        // Reusable objects
        var S = [];
        var C_ = [];
        var G = [];
        /**
         * Rabbit stream cipher algorithm.
         *
         * This is a legacy version that neglected to convert the key to little-endian.
         * This error doesn't affect the cipher's security,
         * but it does affect its compatibility with other implementations.
         */ var RabbitLegacy = (C_algo.RabbitLegacy = StreamCipher.extend({
          _doReset: function _doReset() {
            // Shortcuts
            var K = this._key.words;
            var iv = this.cfg.iv;
            // Generate initial state values
            var X = (this._X = [
              K[0],
              (K[3] << 16) | (K[2] >>> 16),
              K[1],
              (K[0] << 16) | (K[3] >>> 16),
              K[2],
              (K[1] << 16) | (K[0] >>> 16),
              K[3],
              (K[2] << 16) | (K[1] >>> 16),
            ]);
            // Generate initial counter values
            var C = (this._C = [
              (K[2] << 16) | (K[2] >>> 16),
              (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),
              (K[3] << 16) | (K[3] >>> 16),
              (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),
              (K[0] << 16) | (K[0] >>> 16),
              (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),
              (K[1] << 16) | (K[1] >>> 16),
              (K[3] & 0xffff0000) | (K[0] & 0x0000ffff),
            ]);
            // Carry bit
            this._b = 0;
            // Iterate the system four times
            for (var i = 0; i < 4; i++) {
              nextState.call(this);
            }
            // Modify the counters
            for (var i = 0; i < 8; i++) {
              C[i] ^= X[(i + 4) & 7];
            }
            // IV setup
            if (iv) {
              // Shortcuts
              var IV = iv.words;
              var IV_0 = IV[0];
              var IV_1 = IV[1];
              // Generate four subvectors
              var i0 =
                (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) |
                (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);
              var i2 =
                (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) |
                (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);
              var i1 = (i0 >>> 16) | (i2 & 0xffff0000);
              var i3 = (i2 << 16) | (i0 & 0x0000ffff);
              // Modify counter values
              C[0] ^= i0;
              C[1] ^= i1;
              C[2] ^= i2;
              C[3] ^= i3;
              C[4] ^= i0;
              C[5] ^= i1;
              C[6] ^= i2;
              C[7] ^= i3;
              // Iterate the system four times
              for (var i = 0; i < 4; i++) {
                nextState.call(this);
              }
            }
          },
          _doProcessBlock: function _doProcessBlock(M, offset) {
            // Shortcut
            var X = this._X;
            // Iterate the system
            nextState.call(this);
            // Generate four keystream words
            S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);
            S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);
            S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);
            S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);
            for (var i = 0; i < 4; i++) {
              // Swap endian
              S[i] =
                (((S[i] << 8) | (S[i] >>> 24)) & 0x00ff00ff) |
                (((S[i] << 24) | (S[i] >>> 8)) & 0xff00ff00);
              // Encrypt
              M[offset + i] ^= S[i];
            }
          },
          blockSize: 128 / 32,
          ivSize: 64 / 32,
        }));
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.RabbitLegacy.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.RabbitLegacy.decrypt(ciphertext, key, cfg);
         */ C.RabbitLegacy = StreamCipher._createHelper(RabbitLegacy);
      })();
      return CryptoJS.RabbitLegacy;
    });
  });

  var cryptoJs = createCommonjsModule(function (module, exports) {
    (function (root, factory, undef) {
      {
        // CommonJS
        module.exports = factory(
          core,
          x64Core,
          libTypedarrays,
          encUtf16,
          encBase64,
          encBase64url,
          md5,
          sha1,
          sha256,
          sha224,
          sha512,
          sha384,
          sha3,
          ripemd160,
          hmac,
          pbkdf2,
          evpkdf,
          cipherCore,
          modeCfb,
          modeCtr,
          modeCtrGladman,
          modeOfb,
          modeEcb,
          padAnsix923,
          padIso10126,
          padIso97971,
          padZeropadding,
          padNopadding,
          formatHex,
          aes,
          tripledes,
          rc4,
          rabbit,
          rabbitLegacy
        );
      }
    })(commonjsGlobal, function (CryptoJS) {
      return CryptoJS;
    });
  });

  return cryptoJs;
});
//# sourceMappingURL=crypto-js.min.js.map