1448 lines
52 KiB
PHP
1448 lines
52 KiB
PHP
<?php
|
|
|
|
namespace PhpOffice\PhpSpreadsheet\Calculation;
|
|
|
|
use Complex\Complex;
|
|
use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ComplexFunctions;
|
|
use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ComplexOperations;
|
|
|
|
/**
|
|
* @deprecated 1.18.0
|
|
*/
|
|
class Engineering
|
|
{
|
|
/**
|
|
* EULER.
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use Engineering\Constants::EULER instead
|
|
* @see Engineering\Constants::EULER
|
|
*/
|
|
public const EULER = 2.71828182845904523536;
|
|
|
|
/**
|
|
* parseComplex.
|
|
*
|
|
* Parses a complex number into its real and imaginary parts, and an I or J suffix
|
|
*
|
|
* @deprecated 1.12.0 No longer used by internal code. Please use the \Complex\Complex class instead
|
|
*
|
|
* @param string $complexNumber The complex number
|
|
*
|
|
* @return mixed[] Indexed on "real", "imaginary" and "suffix"
|
|
*/
|
|
public static function parseComplex($complexNumber)
|
|
{
|
|
$complex = new Complex($complexNumber);
|
|
|
|
return [
|
|
'real' => $complex->getReal(),
|
|
'imaginary' => $complex->getImaginary(),
|
|
'suffix' => $complex->getSuffix(),
|
|
];
|
|
}
|
|
|
|
/**
|
|
* BESSELI.
|
|
*
|
|
* Returns the modified Bessel function In(x), which is equivalent to the Bessel function evaluated
|
|
* for purely imaginary arguments
|
|
*
|
|
* Excel Function:
|
|
* BESSELI(x,ord)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BESSELI() method in the Engineering\BesselI class instead
|
|
* @see Engineering\BesselI::BESSELI()
|
|
*
|
|
* @param float $x The value at which to evaluate the function.
|
|
* If x is nonnumeric, BESSELI returns the #VALUE! error value.
|
|
* @param int $ord The order of the Bessel function.
|
|
* If ord is not an integer, it is truncated.
|
|
* If $ord is nonnumeric, BESSELI returns the #VALUE! error value.
|
|
* If $ord < 0, BESSELI returns the #NUM! error value.
|
|
*
|
|
* @return array|float|string Result, or a string containing an error
|
|
*/
|
|
public static function BESSELI($x, $ord)
|
|
{
|
|
return Engineering\BesselI::BESSELI($x, $ord);
|
|
}
|
|
|
|
/**
|
|
* BESSELJ.
|
|
*
|
|
* Returns the Bessel function
|
|
*
|
|
* Excel Function:
|
|
* BESSELJ(x,ord)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BESSELJ() method in the Engineering\BesselJ class instead
|
|
* @see Engineering\BesselJ::BESSELJ()
|
|
*
|
|
* @param float $x The value at which to evaluate the function.
|
|
* If x is nonnumeric, BESSELJ returns the #VALUE! error value.
|
|
* @param int $ord The order of the Bessel function. If n is not an integer, it is truncated.
|
|
* If $ord is nonnumeric, BESSELJ returns the #VALUE! error value.
|
|
* If $ord < 0, BESSELJ returns the #NUM! error value.
|
|
*
|
|
* @return array|float|string Result, or a string containing an error
|
|
*/
|
|
public static function BESSELJ($x, $ord)
|
|
{
|
|
return Engineering\BesselJ::BESSELJ($x, $ord);
|
|
}
|
|
|
|
/**
|
|
* BESSELK.
|
|
*
|
|
* Returns the modified Bessel function Kn(x), which is equivalent to the Bessel functions evaluated
|
|
* for purely imaginary arguments.
|
|
*
|
|
* Excel Function:
|
|
* BESSELK(x,ord)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BESSELK() method in the Engineering\BesselK class instead
|
|
* @see Engineering\BesselK::BESSELK()
|
|
*
|
|
* @param float $x The value at which to evaluate the function.
|
|
* If x is nonnumeric, BESSELK returns the #VALUE! error value.
|
|
* @param int $ord The order of the Bessel function. If n is not an integer, it is truncated.
|
|
* If $ord is nonnumeric, BESSELK returns the #VALUE! error value.
|
|
* If $ord < 0, BESSELK returns the #NUM! error value.
|
|
*
|
|
* @return array|float|string Result, or a string containing an error
|
|
*/
|
|
public static function BESSELK($x, $ord)
|
|
{
|
|
return Engineering\BesselK::BESSELK($x, $ord);
|
|
}
|
|
|
|
/**
|
|
* BESSELY.
|
|
*
|
|
* Returns the Bessel function, which is also called the Weber function or the Neumann function.
|
|
*
|
|
* Excel Function:
|
|
* BESSELY(x,ord)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BESSELY() method in the Engineering\BesselY class instead
|
|
* @see Engineering\BesselY::BESSELY()
|
|
*
|
|
* @param float $x The value at which to evaluate the function.
|
|
* If x is nonnumeric, BESSELY returns the #VALUE! error value.
|
|
* @param int $ord The order of the Bessel function. If n is not an integer, it is truncated.
|
|
* If $ord is nonnumeric, BESSELY returns the #VALUE! error value.
|
|
* If $ord < 0, BESSELY returns the #NUM! error value.
|
|
*
|
|
* @return array|float|string Result, or a string containing an error
|
|
*/
|
|
public static function BESSELY($x, $ord)
|
|
{
|
|
return Engineering\BesselY::BESSELY($x, $ord);
|
|
}
|
|
|
|
/**
|
|
* BINTODEC.
|
|
*
|
|
* Return a binary value as decimal.
|
|
*
|
|
* Excel Function:
|
|
* BIN2DEC(x)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toDecimal() method in the Engineering\ConvertBinary class instead
|
|
* @see Engineering\ConvertBinary::toDecimal()
|
|
*
|
|
* @param mixed $x The binary number (as a string) that you want to convert. The number
|
|
* cannot contain more than 10 characters (10 bits). The most significant
|
|
* bit of number is the sign bit. The remaining 9 bits are magnitude bits.
|
|
* Negative numbers are represented using two's-complement notation.
|
|
* If number is not a valid binary number, or if number contains more than
|
|
* 10 characters (10 bits), BIN2DEC returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function BINTODEC($x)
|
|
{
|
|
return Engineering\ConvertBinary::toDecimal($x);
|
|
}
|
|
|
|
/**
|
|
* BINTOHEX.
|
|
*
|
|
* Return a binary value as hex.
|
|
*
|
|
* Excel Function:
|
|
* BIN2HEX(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toHex() method in the Engineering\ConvertBinary class instead
|
|
* @see Engineering\ConvertBinary::toHex()
|
|
*
|
|
* @param mixed $x The binary number (as a string) that you want to convert. The number
|
|
* cannot contain more than 10 characters (10 bits). The most significant
|
|
* bit of number is the sign bit. The remaining 9 bits are magnitude bits.
|
|
* Negative numbers are represented using two's-complement notation.
|
|
* If number is not a valid binary number, or if number contains more than
|
|
* 10 characters (10 bits), BIN2HEX returns the #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, BIN2HEX uses the
|
|
* minimum number of characters necessary. Places is useful for padding the
|
|
* return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, BIN2HEX returns the #VALUE! error value.
|
|
* If places is negative, BIN2HEX returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function BINTOHEX($x, $places = null)
|
|
{
|
|
return Engineering\ConvertBinary::toHex($x, $places);
|
|
}
|
|
|
|
/**
|
|
* BINTOOCT.
|
|
*
|
|
* Return a binary value as octal.
|
|
*
|
|
* Excel Function:
|
|
* BIN2OCT(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toOctal() method in the Engineering\ConvertBinary class instead
|
|
* @see Engineering\ConvertBinary::toOctal()
|
|
*
|
|
* @param mixed $x The binary number (as a string) that you want to convert. The number
|
|
* cannot contain more than 10 characters (10 bits). The most significant
|
|
* bit of number is the sign bit. The remaining 9 bits are magnitude bits.
|
|
* Negative numbers are represented using two's-complement notation.
|
|
* If number is not a valid binary number, or if number contains more than
|
|
* 10 characters (10 bits), BIN2OCT returns the #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, BIN2OCT uses the
|
|
* minimum number of characters necessary. Places is useful for padding the
|
|
* return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, BIN2OCT returns the #VALUE! error value.
|
|
* If places is negative, BIN2OCT returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function BINTOOCT($x, $places = null)
|
|
{
|
|
return Engineering\ConvertBinary::toOctal($x, $places);
|
|
}
|
|
|
|
/**
|
|
* DECTOBIN.
|
|
*
|
|
* Return a decimal value as binary.
|
|
*
|
|
* Excel Function:
|
|
* DEC2BIN(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toBinary() method in the Engineering\ConvertDecimal class instead
|
|
* @see Engineering\ConvertDecimal::toBinary()
|
|
*
|
|
* @param mixed $x The decimal integer you want to convert. If number is negative,
|
|
* valid place values are ignored and DEC2BIN returns a 10-character
|
|
* (10-bit) binary number in which the most significant bit is the sign
|
|
* bit. The remaining 9 bits are magnitude bits. Negative numbers are
|
|
* represented using two's-complement notation.
|
|
* If number < -512 or if number > 511, DEC2BIN returns the #NUM! error
|
|
* value.
|
|
* If number is nonnumeric, DEC2BIN returns the #VALUE! error value.
|
|
* If DEC2BIN requires more than places characters, it returns the #NUM!
|
|
* error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, DEC2BIN uses
|
|
* the minimum number of characters necessary. Places is useful for
|
|
* padding the return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, DEC2BIN returns the #VALUE! error value.
|
|
* If places is zero or negative, DEC2BIN returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function DECTOBIN($x, $places = null)
|
|
{
|
|
return Engineering\ConvertDecimal::toBinary($x, $places);
|
|
}
|
|
|
|
/**
|
|
* DECTOHEX.
|
|
*
|
|
* Return a decimal value as hex.
|
|
*
|
|
* Excel Function:
|
|
* DEC2HEX(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toHex() method in the Engineering\ConvertDecimal class instead
|
|
* @see Engineering\ConvertDecimal::toHex()
|
|
*
|
|
* @param mixed $x The decimal integer you want to convert. If number is negative,
|
|
* places is ignored and DEC2HEX returns a 10-character (40-bit)
|
|
* hexadecimal number in which the most significant bit is the sign
|
|
* bit. The remaining 39 bits are magnitude bits. Negative numbers
|
|
* are represented using two's-complement notation.
|
|
* If number < -549,755,813,888 or if number > 549,755,813,887,
|
|
* DEC2HEX returns the #NUM! error value.
|
|
* If number is nonnumeric, DEC2HEX returns the #VALUE! error value.
|
|
* If DEC2HEX requires more than places characters, it returns the
|
|
* #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, DEC2HEX uses
|
|
* the minimum number of characters necessary. Places is useful for
|
|
* padding the return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, DEC2HEX returns the #VALUE! error value.
|
|
* If places is zero or negative, DEC2HEX returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function DECTOHEX($x, $places = null)
|
|
{
|
|
return Engineering\ConvertDecimal::toHex($x, $places);
|
|
}
|
|
|
|
/**
|
|
* DECTOOCT.
|
|
*
|
|
* Return an decimal value as octal.
|
|
*
|
|
* Excel Function:
|
|
* DEC2OCT(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toOctal() method in the Engineering\ConvertDecimal class instead
|
|
* @see Engineering\ConvertDecimal::toOctal()
|
|
*
|
|
* @param mixed $x The decimal integer you want to convert. If number is negative,
|
|
* places is ignored and DEC2OCT returns a 10-character (30-bit)
|
|
* octal number in which the most significant bit is the sign bit.
|
|
* The remaining 29 bits are magnitude bits. Negative numbers are
|
|
* represented using two's-complement notation.
|
|
* If number < -536,870,912 or if number > 536,870,911, DEC2OCT
|
|
* returns the #NUM! error value.
|
|
* If number is nonnumeric, DEC2OCT returns the #VALUE! error value.
|
|
* If DEC2OCT requires more than places characters, it returns the
|
|
* #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, DEC2OCT uses
|
|
* the minimum number of characters necessary. Places is useful for
|
|
* padding the return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, DEC2OCT returns the #VALUE! error value.
|
|
* If places is zero or negative, DEC2OCT returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function DECTOOCT($x, $places = null)
|
|
{
|
|
return Engineering\ConvertDecimal::toOctal($x, $places);
|
|
}
|
|
|
|
/**
|
|
* HEXTOBIN.
|
|
*
|
|
* Return a hex value as binary.
|
|
*
|
|
* Excel Function:
|
|
* HEX2BIN(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toBinary() method in the Engineering\ConvertHex class instead
|
|
* @see Engineering\ConvertHex::toBinary()
|
|
*
|
|
* @param mixed $x the hexadecimal number (as a string) that you want to convert.
|
|
* Number cannot contain more than 10 characters.
|
|
* The most significant bit of number is the sign bit (40th bit from the right).
|
|
* The remaining 9 bits are magnitude bits.
|
|
* Negative numbers are represented using two's-complement notation.
|
|
* If number is negative, HEX2BIN ignores places and returns a 10-character binary number.
|
|
* If number is negative, it cannot be less than FFFFFFFE00,
|
|
* and if number is positive, it cannot be greater than 1FF.
|
|
* If number is not a valid hexadecimal number, HEX2BIN returns the #NUM! error value.
|
|
* If HEX2BIN requires more than places characters, it returns the #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted,
|
|
* HEX2BIN uses the minimum number of characters necessary. Places
|
|
* is useful for padding the return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, HEX2BIN returns the #VALUE! error value.
|
|
* If places is negative, HEX2BIN returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function HEXTOBIN($x, $places = null)
|
|
{
|
|
return Engineering\ConvertHex::toBinary($x, $places);
|
|
}
|
|
|
|
/**
|
|
* HEXTODEC.
|
|
*
|
|
* Return a hex value as decimal.
|
|
*
|
|
* Excel Function:
|
|
* HEX2DEC(x)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toDecimal() method in the Engineering\ConvertHex class instead
|
|
* @see Engineering\ConvertHex::toDecimal()
|
|
*
|
|
* @param mixed $x The hexadecimal number (as a string) that you want to convert. This number cannot
|
|
* contain more than 10 characters (40 bits). The most significant
|
|
* bit of number is the sign bit. The remaining 39 bits are magnitude
|
|
* bits. Negative numbers are represented using two's-complement
|
|
* notation.
|
|
* If number is not a valid hexadecimal number, HEX2DEC returns the
|
|
* #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function HEXTODEC($x)
|
|
{
|
|
return Engineering\ConvertHex::toDecimal($x);
|
|
}
|
|
|
|
/**
|
|
* HEXTOOCT.
|
|
*
|
|
* Return a hex value as octal.
|
|
*
|
|
* Excel Function:
|
|
* HEX2OCT(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toOctal() method in the Engineering\ConvertHex class instead
|
|
* @see Engineering\ConvertHex::toOctal()
|
|
*
|
|
* @param mixed $x The hexadecimal number (as a string) that you want to convert. Number cannot
|
|
* contain more than 10 characters. The most significant bit of
|
|
* number is the sign bit. The remaining 39 bits are magnitude
|
|
* bits. Negative numbers are represented using two's-complement
|
|
* notation.
|
|
* If number is negative, HEX2OCT ignores places and returns a
|
|
* 10-character octal number.
|
|
* If number is negative, it cannot be less than FFE0000000, and
|
|
* if number is positive, it cannot be greater than 1FFFFFFF.
|
|
* If number is not a valid hexadecimal number, HEX2OCT returns
|
|
* the #NUM! error value.
|
|
* If HEX2OCT requires more than places characters, it returns
|
|
* the #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, HEX2OCT
|
|
* uses the minimum number of characters necessary. Places is
|
|
* useful for padding the return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, HEX2OCT returns the #VALUE! error
|
|
* value.
|
|
* If places is negative, HEX2OCT returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function HEXTOOCT($x, $places = null)
|
|
{
|
|
return Engineering\ConvertHex::toOctal($x, $places);
|
|
}
|
|
|
|
/**
|
|
* OCTTOBIN.
|
|
*
|
|
* Return an octal value as binary.
|
|
*
|
|
* Excel Function:
|
|
* OCT2BIN(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toBinary() method in the Engineering\ConvertOctal class instead
|
|
* @see Engineering\ConvertOctal::toBinary()
|
|
*
|
|
* @param mixed $x The octal number you want to convert. Number may not
|
|
* contain more than 10 characters. The most significant
|
|
* bit of number is the sign bit. The remaining 29 bits
|
|
* are magnitude bits. Negative numbers are represented
|
|
* using two's-complement notation.
|
|
* If number is negative, OCT2BIN ignores places and returns
|
|
* a 10-character binary number.
|
|
* If number is negative, it cannot be less than 7777777000,
|
|
* and if number is positive, it cannot be greater than 777.
|
|
* If number is not a valid octal number, OCT2BIN returns
|
|
* the #NUM! error value.
|
|
* If OCT2BIN requires more than places characters, it
|
|
* returns the #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted,
|
|
* OCT2BIN uses the minimum number of characters necessary.
|
|
* Places is useful for padding the return value with
|
|
* leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, OCT2BIN returns the #VALUE!
|
|
* error value.
|
|
* If places is negative, OCT2BIN returns the #NUM! error
|
|
* value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function OCTTOBIN($x, $places = null)
|
|
{
|
|
return Engineering\ConvertOctal::toBinary($x, $places);
|
|
}
|
|
|
|
/**
|
|
* OCTTODEC.
|
|
*
|
|
* Return an octal value as decimal.
|
|
*
|
|
* Excel Function:
|
|
* OCT2DEC(x)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toDecimal() method in the Engineering\ConvertOctal class instead
|
|
* @see Engineering\ConvertOctal::toDecimal()
|
|
*
|
|
* @param mixed $x The octal number you want to convert. Number may not contain
|
|
* more than 10 octal characters (30 bits). The most significant
|
|
* bit of number is the sign bit. The remaining 29 bits are
|
|
* magnitude bits. Negative numbers are represented using
|
|
* two's-complement notation.
|
|
* If number is not a valid octal number, OCT2DEC returns the
|
|
* #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function OCTTODEC($x)
|
|
{
|
|
return Engineering\ConvertOctal::toDecimal($x);
|
|
}
|
|
|
|
/**
|
|
* OCTTOHEX.
|
|
*
|
|
* Return an octal value as hex.
|
|
*
|
|
* Excel Function:
|
|
* OCT2HEX(x[,places])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the toHex() method in the Engineering\ConvertOctal class instead
|
|
* @see Engineering\ConvertOctal::toHex()
|
|
*
|
|
* @param mixed $x The octal number you want to convert. Number may not contain
|
|
* more than 10 octal characters (30 bits). The most significant
|
|
* bit of number is the sign bit. The remaining 29 bits are
|
|
* magnitude bits. Negative numbers are represented using
|
|
* two's-complement notation.
|
|
* If number is negative, OCT2HEX ignores places and returns a
|
|
* 10-character hexadecimal number.
|
|
* If number is not a valid octal number, OCT2HEX returns the
|
|
* #NUM! error value.
|
|
* If OCT2HEX requires more than places characters, it returns
|
|
* the #NUM! error value.
|
|
* @param mixed $places The number of characters to use. If places is omitted, OCT2HEX
|
|
* uses the minimum number of characters necessary. Places is useful
|
|
* for padding the return value with leading 0s (zeros).
|
|
* If places is not an integer, it is truncated.
|
|
* If places is nonnumeric, OCT2HEX returns the #VALUE! error value.
|
|
* If places is negative, OCT2HEX returns the #NUM! error value.
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function OCTTOHEX($x, $places = null)
|
|
{
|
|
return Engineering\ConvertOctal::toHex($x, $places);
|
|
}
|
|
|
|
/**
|
|
* COMPLEX.
|
|
*
|
|
* Converts real and imaginary coefficients into a complex number of the form x +/- yi or x +/- yj.
|
|
*
|
|
* Excel Function:
|
|
* COMPLEX(realNumber,imaginary[,suffix])
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the COMPLEX() method in the Engineering\Complex class instead
|
|
* @see Engineering\Complex::COMPLEX()
|
|
*
|
|
* @param array|float $realNumber the real coefficient of the complex number
|
|
* @param array|float $imaginary the imaginary coefficient of the complex number
|
|
* @param array|string $suffix The suffix for the imaginary component of the complex number.
|
|
* If omitted, the suffix is assumed to be "i".
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function COMPLEX($realNumber = 0.0, $imaginary = 0.0, $suffix = 'i')
|
|
{
|
|
return Engineering\Complex::COMPLEX($realNumber, $imaginary, $suffix);
|
|
}
|
|
|
|
/**
|
|
* IMAGINARY.
|
|
*
|
|
* Returns the imaginary coefficient of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMAGINARY(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMAGINARY() method in the Engineering\Complex class instead
|
|
* @see Engineering\Complex::IMAGINARY()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the imaginary
|
|
* coefficient
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMAGINARY($complexNumber)
|
|
{
|
|
return Engineering\Complex::IMAGINARY($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMREAL.
|
|
*
|
|
* Returns the real coefficient of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMREAL(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMREAL() method in the Engineering\Complex class instead
|
|
* @see Engineering\Complex::IMREAL()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the real coefficient
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMREAL($complexNumber)
|
|
{
|
|
return Engineering\Complex::IMREAL($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMABS.
|
|
*
|
|
* Returns the absolute value (modulus) of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMABS(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMABS() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMABS()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the absolute value
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMABS($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMABS($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMARGUMENT.
|
|
*
|
|
* Returns the argument theta of a complex number, i.e. the angle in radians from the real
|
|
* axis to the representation of the number in polar coordinates.
|
|
*
|
|
* Excel Function:
|
|
* IMARGUMENT(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMARGUMENT() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMARGUMENT()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the argument theta
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMARGUMENT($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMARGUMENT($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMCONJUGATE.
|
|
*
|
|
* Returns the complex conjugate of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMCONJUGATE(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMCONJUGATE() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMCONJUGATE()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the conjugate
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMCONJUGATE($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMCONJUGATE($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMCOS.
|
|
*
|
|
* Returns the cosine of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMCOS(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMCOS() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMCOS()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the cosine
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMCOS($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMCOS($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMCOSH.
|
|
*
|
|
* Returns the hyperbolic cosine of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMCOSH(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMCOSH() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMCOSH()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the hyperbolic cosine
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMCOSH($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMCOSH($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMCOT.
|
|
*
|
|
* Returns the cotangent of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMCOT(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMCOT() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMCOT()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the cotangent
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMCOT($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMCOT($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMCSC.
|
|
*
|
|
* Returns the cosecant of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMCSC(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMCSC() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMCSC()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the cosecant
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMCSC($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMCSC($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMCSCH.
|
|
*
|
|
* Returns the hyperbolic cosecant of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMCSCH(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMCSCH() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMCSCH()
|
|
*
|
|
* @param array|string $complexNumber the complex number for which you want the hyperbolic cosecant
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMCSCH($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMCSCH($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMSIN.
|
|
*
|
|
* Returns the sine of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSIN(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSIN() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMSIN()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the sine
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMSIN($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMSIN($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMSINH.
|
|
*
|
|
* Returns the hyperbolic sine of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSINH(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSINH() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMSINH()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the hyperbolic sine
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMSINH($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMSINH($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMSEC.
|
|
*
|
|
* Returns the secant of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSEC(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSEC() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMSEC()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the secant
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMSEC($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMSEC($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMSECH.
|
|
*
|
|
* Returns the hyperbolic secant of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSECH(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSECH() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMSECH()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the hyperbolic secant
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMSECH($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMSECH($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMTAN.
|
|
*
|
|
* Returns the tangent of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMTAN(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMTAN() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMTAN()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the tangent
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function IMTAN($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMTAN($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMSQRT.
|
|
*
|
|
* Returns the square root of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSQRT(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSQRT() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMSQRT()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the square root
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMSQRT($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMSQRT($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMLN.
|
|
*
|
|
* Returns the natural logarithm of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMLN(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMLN() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMLN()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the natural logarithm
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMLN($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMLN($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMLOG10.
|
|
*
|
|
* Returns the common logarithm (base 10) of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMLOG10(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMLOG10() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMLOG10()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the common logarithm
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMLOG10($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMLOG10($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMLOG2.
|
|
*
|
|
* Returns the base-2 logarithm of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMLOG2(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMLOG2() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMLOG2()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the base-2 logarithm
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMLOG2($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMLOG2($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMEXP.
|
|
*
|
|
* Returns the exponential of a complex number in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMEXP(complexNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMEXP() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMEXP()
|
|
*
|
|
* @param string $complexNumber the complex number for which you want the exponential
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMEXP($complexNumber)
|
|
{
|
|
return ComplexFunctions::IMEXP($complexNumber);
|
|
}
|
|
|
|
/**
|
|
* IMPOWER.
|
|
*
|
|
* Returns a complex number in x + yi or x + yj text format raised to a power.
|
|
*
|
|
* Excel Function:
|
|
* IMPOWER(complexNumber,realNumber)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMPOWER() method in the Engineering\ComplexFunctions class instead
|
|
* @see ComplexFunctions::IMPOWER()
|
|
*
|
|
* @param string $complexNumber the complex number you want to raise to a power
|
|
* @param float $realNumber the power to which you want to raise the complex number
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMPOWER($complexNumber, $realNumber)
|
|
{
|
|
return ComplexFunctions::IMPOWER($complexNumber, $realNumber);
|
|
}
|
|
|
|
/**
|
|
* IMDIV.
|
|
*
|
|
* Returns the quotient of two complex numbers in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMDIV(complexDividend,complexDivisor)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMDIV() method in the Engineering\ComplexOperations class instead
|
|
* @see ComplexOperations::IMDIV()
|
|
*
|
|
* @param string $complexDividend the complex numerator or dividend
|
|
* @param string $complexDivisor the complex denominator or divisor
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMDIV($complexDividend, $complexDivisor)
|
|
{
|
|
return ComplexOperations::IMDIV($complexDividend, $complexDivisor);
|
|
}
|
|
|
|
/**
|
|
* IMSUB.
|
|
*
|
|
* Returns the difference of two complex numbers in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSUB(complexNumber1,complexNumber2)
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSUB() method in the Engineering\ComplexOperations class instead
|
|
* @see ComplexOperations::IMSUB()
|
|
*
|
|
* @param string $complexNumber1 the complex number from which to subtract complexNumber2
|
|
* @param string $complexNumber2 the complex number to subtract from complexNumber1
|
|
*
|
|
* @return array|string
|
|
*/
|
|
public static function IMSUB($complexNumber1, $complexNumber2)
|
|
{
|
|
return ComplexOperations::IMSUB($complexNumber1, $complexNumber2);
|
|
}
|
|
|
|
/**
|
|
* IMSUM.
|
|
*
|
|
* Returns the sum of two or more complex numbers in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMSUM(complexNumber[,complexNumber[,...]])
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMSUM() method in the Engineering\ComplexOperations class instead
|
|
* @see ComplexOperations::IMSUM()
|
|
*
|
|
* @param string ...$complexNumbers Series of complex numbers to add
|
|
*
|
|
* @return string
|
|
*/
|
|
public static function IMSUM(...$complexNumbers)
|
|
{
|
|
return ComplexOperations::IMSUM(...$complexNumbers);
|
|
}
|
|
|
|
/**
|
|
* IMPRODUCT.
|
|
*
|
|
* Returns the product of two or more complex numbers in x + yi or x + yj text format.
|
|
*
|
|
* Excel Function:
|
|
* IMPRODUCT(complexNumber[,complexNumber[,...]])
|
|
*
|
|
* @deprecated 1.18.0
|
|
* Use the IMPRODUCT() method in the Engineering\ComplexOperations class instead
|
|
* @see ComplexOperations::IMPRODUCT()
|
|
*
|
|
* @param string ...$complexNumbers Series of complex numbers to multiply
|
|
*
|
|
* @return string
|
|
*/
|
|
public static function IMPRODUCT(...$complexNumbers)
|
|
{
|
|
return ComplexOperations::IMPRODUCT(...$complexNumbers);
|
|
}
|
|
|
|
/**
|
|
* DELTA.
|
|
*
|
|
* Tests whether two values are equal. Returns 1 if number1 = number2; returns 0 otherwise.
|
|
* Use this function to filter a set of values. For example, by summing several DELTA
|
|
* functions you calculate the count of equal pairs. This function is also known as the
|
|
* Kronecker Delta function.
|
|
*
|
|
* Excel Function:
|
|
* DELTA(a[,b])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the DELTA() method in the Engineering\Compare class instead
|
|
* @see Engineering\Compare::DELTA()
|
|
*
|
|
* @param float $a the first number
|
|
* @param float $b The second number. If omitted, b is assumed to be zero.
|
|
*
|
|
* @return array|int|string (string in the event of an error)
|
|
*/
|
|
public static function DELTA($a, $b = 0)
|
|
{
|
|
return Engineering\Compare::DELTA($a, $b);
|
|
}
|
|
|
|
/**
|
|
* GESTEP.
|
|
*
|
|
* Excel Function:
|
|
* GESTEP(number[,step])
|
|
*
|
|
* Returns 1 if number >= step; returns 0 (zero) otherwise
|
|
* Use this function to filter a set of values. For example, by summing several GESTEP
|
|
* functions you calculate the count of values that exceed a threshold.
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the GESTEP() method in the Engineering\Compare class instead
|
|
* @see Engineering\Compare::GESTEP()
|
|
*
|
|
* @param float $number the value to test against step
|
|
* @param float $step The threshold value. If you omit a value for step, GESTEP uses zero.
|
|
*
|
|
* @return array|int|string (string in the event of an error)
|
|
*/
|
|
public static function GESTEP($number, $step = 0)
|
|
{
|
|
return Engineering\Compare::GESTEP($number, $step);
|
|
}
|
|
|
|
/**
|
|
* BITAND.
|
|
*
|
|
* Returns the bitwise AND of two integer values.
|
|
*
|
|
* Excel Function:
|
|
* BITAND(number1, number2)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BITAND() method in the Engineering\BitWise class instead
|
|
* @see Engineering\BitWise::BITAND()
|
|
*
|
|
* @param int $number1
|
|
* @param int $number2
|
|
*
|
|
* @return array|int|string
|
|
*/
|
|
public static function BITAND($number1, $number2)
|
|
{
|
|
return Engineering\BitWise::BITAND($number1, $number2);
|
|
}
|
|
|
|
/**
|
|
* BITOR.
|
|
*
|
|
* Returns the bitwise OR of two integer values.
|
|
*
|
|
* Excel Function:
|
|
* BITOR(number1, number2)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BITOR() method in the Engineering\BitWise class instead
|
|
* @see Engineering\BitWise::BITOR()
|
|
*
|
|
* @param int $number1
|
|
* @param int $number2
|
|
*
|
|
* @return array|int|string
|
|
*/
|
|
public static function BITOR($number1, $number2)
|
|
{
|
|
return Engineering\BitWise::BITOR($number1, $number2);
|
|
}
|
|
|
|
/**
|
|
* BITXOR.
|
|
*
|
|
* Returns the bitwise XOR of two integer values.
|
|
*
|
|
* Excel Function:
|
|
* BITXOR(number1, number2)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BITXOR() method in the Engineering\BitWise class instead
|
|
* @see Engineering\BitWise::BITXOR()
|
|
*
|
|
* @param int $number1
|
|
* @param int $number2
|
|
*
|
|
* @return array|int|string
|
|
*/
|
|
public static function BITXOR($number1, $number2)
|
|
{
|
|
return Engineering\BitWise::BITXOR($number1, $number2);
|
|
}
|
|
|
|
/**
|
|
* BITLSHIFT.
|
|
*
|
|
* Returns the number value shifted left by shift_amount bits.
|
|
*
|
|
* Excel Function:
|
|
* BITLSHIFT(number, shift_amount)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BITLSHIFT() method in the Engineering\BitWise class instead
|
|
* @see Engineering\BitWise::BITLSHIFT()
|
|
*
|
|
* @param int $number
|
|
* @param int $shiftAmount
|
|
*
|
|
* @return array|float|int|string
|
|
*/
|
|
public static function BITLSHIFT($number, $shiftAmount)
|
|
{
|
|
return Engineering\BitWise::BITLSHIFT($number, $shiftAmount);
|
|
}
|
|
|
|
/**
|
|
* BITRSHIFT.
|
|
*
|
|
* Returns the number value shifted right by shift_amount bits.
|
|
*
|
|
* Excel Function:
|
|
* BITRSHIFT(number, shift_amount)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the BITRSHIFT() method in the Engineering\BitWise class instead
|
|
* @see Engineering\BitWise::BITRSHIFT()
|
|
*
|
|
* @param int $number
|
|
* @param int $shiftAmount
|
|
*
|
|
* @return array|float|int|string
|
|
*/
|
|
public static function BITRSHIFT($number, $shiftAmount)
|
|
{
|
|
return Engineering\BitWise::BITRSHIFT($number, $shiftAmount);
|
|
}
|
|
|
|
/**
|
|
* ERF.
|
|
*
|
|
* Returns the error function integrated between the lower and upper bound arguments.
|
|
*
|
|
* Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments,
|
|
* the function would return a #NUM! error. However, in Excel 2010, the function algorithm was
|
|
* improved, so that it can now calculate the function for both positive and negative ranges.
|
|
* PhpSpreadsheet follows Excel 2010 behaviour, and accepts negative arguments.
|
|
*
|
|
* Excel Function:
|
|
* ERF(lower[,upper])
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the ERF() method in the Engineering\Erf class instead
|
|
* @see Engineering\Erf::ERF()
|
|
*
|
|
* @param float $lower lower bound for integrating ERF
|
|
* @param float $upper upper bound for integrating ERF.
|
|
* If omitted, ERF integrates between zero and lower_limit
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function ERF($lower, $upper = null)
|
|
{
|
|
return Engineering\Erf::ERF($lower, $upper);
|
|
}
|
|
|
|
/**
|
|
* ERFPRECISE.
|
|
*
|
|
* Returns the error function integrated between the lower and upper bound arguments.
|
|
*
|
|
* Excel Function:
|
|
* ERF.PRECISE(limit)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the ERFPRECISE() method in the Engineering\Erf class instead
|
|
* @see Engineering\Erf::ERFPRECISE()
|
|
*
|
|
* @param float $limit bound for integrating ERF
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function ERFPRECISE($limit)
|
|
{
|
|
return Engineering\Erf::ERFPRECISE($limit);
|
|
}
|
|
|
|
/**
|
|
* ERFC.
|
|
*
|
|
* Returns the complementary ERF function integrated between x and infinity
|
|
*
|
|
* Note: In Excel 2007 or earlier, if you input a negative value for the lower bound argument,
|
|
* the function would return a #NUM! error. However, in Excel 2010, the function algorithm was
|
|
* improved, so that it can now calculate the function for both positive and negative x values.
|
|
* PhpSpreadsheet follows Excel 2010 behaviour, and accepts nagative arguments.
|
|
*
|
|
* Excel Function:
|
|
* ERFC(x)
|
|
*
|
|
* @deprecated 1.17.0
|
|
* Use the ERFC() method in the Engineering\ErfC class instead
|
|
* @see Engineering\ErfC::ERFC()
|
|
*
|
|
* @param float $x The lower bound for integrating ERFC
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function ERFC($x)
|
|
{
|
|
return Engineering\ErfC::ERFC($x);
|
|
}
|
|
|
|
/**
|
|
* getConversionGroups
|
|
* Returns a list of the different conversion groups for UOM conversions.
|
|
*
|
|
* @deprecated 1.16.0
|
|
* Use the getConversionCategories() method in the Engineering\ConvertUOM class instead
|
|
* @see Engineering\ConvertUOM::getConversionCategories()
|
|
*
|
|
* @return array
|
|
*/
|
|
public static function getConversionGroups()
|
|
{
|
|
return Engineering\ConvertUOM::getConversionCategories();
|
|
}
|
|
|
|
/**
|
|
* getConversionGroupUnits
|
|
* Returns an array of units of measure, for a specified conversion group, or for all groups.
|
|
*
|
|
* @deprecated 1.16.0
|
|
* Use the getConversionCategoryUnits() method in the ConvertUOM class instead
|
|
* @see Engineering\ConvertUOM::getConversionCategoryUnits()
|
|
*
|
|
* @param null|mixed $category
|
|
*
|
|
* @return array
|
|
*/
|
|
public static function getConversionGroupUnits($category = null)
|
|
{
|
|
return Engineering\ConvertUOM::getConversionCategoryUnits($category);
|
|
}
|
|
|
|
/**
|
|
* getConversionGroupUnitDetails.
|
|
*
|
|
* @deprecated 1.16.0
|
|
* Use the getConversionCategoryUnitDetails() method in the ConvertUOM class instead
|
|
* @see Engineering\ConvertUOM::getConversionCategoryUnitDetails()
|
|
*
|
|
* @param null|mixed $category
|
|
*
|
|
* @return array
|
|
*/
|
|
public static function getConversionGroupUnitDetails($category = null)
|
|
{
|
|
return Engineering\ConvertUOM::getConversionCategoryUnitDetails($category);
|
|
}
|
|
|
|
/**
|
|
* getConversionMultipliers
|
|
* Returns an array of the Multiplier prefixes that can be used with Units of Measure in CONVERTUOM().
|
|
*
|
|
* @deprecated 1.16.0
|
|
* Use the getConversionMultipliers() method in the ConvertUOM class instead
|
|
* @see Engineering\ConvertUOM::getConversionMultipliers()
|
|
*
|
|
* @return mixed[]
|
|
*/
|
|
public static function getConversionMultipliers()
|
|
{
|
|
return Engineering\ConvertUOM::getConversionMultipliers();
|
|
}
|
|
|
|
/**
|
|
* getBinaryConversionMultipliers.
|
|
*
|
|
* Returns an array of the additional Multiplier prefixes that can be used with Information Units of Measure
|
|
* in CONVERTUOM().
|
|
*
|
|
* @deprecated 1.16.0
|
|
* Use the getBinaryConversionMultipliers() method in the ConvertUOM class instead
|
|
* @see Engineering\ConvertUOM::getBinaryConversionMultipliers()
|
|
*
|
|
* @return mixed[]
|
|
*/
|
|
public static function getBinaryConversionMultipliers()
|
|
{
|
|
return Engineering\ConvertUOM::getBinaryConversionMultipliers();
|
|
}
|
|
|
|
/**
|
|
* CONVERTUOM.
|
|
*
|
|
* Converts a number from one measurement system to another.
|
|
* For example, CONVERT can translate a table of distances in miles to a table of distances
|
|
* in kilometers.
|
|
*
|
|
* Excel Function:
|
|
* CONVERT(value,fromUOM,toUOM)
|
|
*
|
|
* @deprecated 1.16.0
|
|
* Use the CONVERT() method in the ConvertUOM class instead
|
|
* @see Engineering\ConvertUOM::CONVERT()
|
|
*
|
|
* @param float|int $value the value in fromUOM to convert
|
|
* @param string $fromUOM the units for value
|
|
* @param string $toUOM the units for the result
|
|
*
|
|
* @return array|float|string
|
|
*/
|
|
public static function CONVERTUOM($value, $fromUOM, $toUOM)
|
|
{
|
|
return Engineering\ConvertUOM::CONVERT($value, $fromUOM, $toUOM);
|
|
}
|
|
}
|